Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build & test (master) Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.8+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread use by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kdepy-1.1.11.tar.gz (168.3 kB view details)

Uploaded Source

Built Distributions

KDEpy-1.1.11-cp313-cp313-win_amd64.whl (258.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

KDEpy-1.1.11-cp313-cp313-win32.whl (246.3 kB view details)

Uploaded CPython 3.13 Windows x86

KDEpy-1.1.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (675.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.11-cp313-cp313-macosx_11_0_arm64.whl (261.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

KDEpy-1.1.11-cp313-cp313-macosx_10_13_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

KDEpy-1.1.11-cp312-cp312-win_amd64.whl (259.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

KDEpy-1.1.11-cp312-cp312-win32.whl (246.4 kB view details)

Uploaded CPython 3.12 Windows x86

KDEpy-1.1.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (682.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.11-cp312-cp312-macosx_11_0_arm64.whl (262.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

KDEpy-1.1.11-cp312-cp312-macosx_10_13_x86_64.whl (267.5 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

KDEpy-1.1.11-cp311-cp311-win_amd64.whl (258.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.11-cp311-cp311-win32.whl (245.5 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (687.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.11-cp311-cp311-macosx_11_0_arm64.whl (261.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

KDEpy-1.1.11-cp311-cp311-macosx_10_9_x86_64.whl (265.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.11-cp310-cp310-win_amd64.whl (257.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.11-cp310-cp310-win32.whl (245.8 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (652.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.11-cp310-cp310-macosx_11_0_arm64.whl (261.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

KDEpy-1.1.11-cp310-cp310-macosx_10_9_x86_64.whl (265.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.11-cp39-cp39-win_amd64.whl (258.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.11-cp39-cp39-win32.whl (246.3 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (655.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.11-cp39-cp39-macosx_11_0_arm64.whl (261.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

KDEpy-1.1.11-cp39-cp39-macosx_10_9_x86_64.whl (266.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.11-cp38-cp38-win_amd64.whl (258.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.11-cp38-cp38-win32.whl (246.5 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (667.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.11-cp38-cp38-macosx_11_0_arm64.whl (261.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

KDEpy-1.1.11-cp38-cp38-macosx_10_9_x86_64.whl (266.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file kdepy-1.1.11.tar.gz.

File metadata

  • Download URL: kdepy-1.1.11.tar.gz
  • Upload date:
  • Size: 168.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for kdepy-1.1.11.tar.gz
Algorithm Hash digest
SHA256 603cc3cd1c80bb0a7a9b0b74ebae117d312e37cee8fc1c637b46888e48d91085
MD5 ece48ab2ba749faa9b6194aae7c87ba9
BLAKE2b-256 13a89206112add5d915338e744f4be378cfab72a6e4244feb3f0eef7827ea934

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 258.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 46548cad3742511dae94f3566b7f9a44b75b52f3081010143a85b7b857d45bc0
MD5 8761ac06c3f41295cda4ffe6b5217060
BLAKE2b-256 c032837b161b0acffefff36f8802b0b79f45d588d68a4012386867371aa22664

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp313-cp313-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp313-cp313-win32.whl
  • Upload date:
  • Size: 246.3 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 1ae504070d555bf8477ae4f2765c63c1401862ee2be664888a6f5115dd2a4927
MD5 75bcdf7539b56a724fc8bccb7549f815
BLAKE2b-256 654983840f1772a4b8df8d69427ef08f30017b46a9915a2a3cf4be2320af0474

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8973ca83ba92f3a8e068ff810d299ffa5a6d9774c606ab03a319236f2bba24d
MD5 47928aa951d5e36780172b5c9adc9d50
BLAKE2b-256 32d6b171f878ac899bf920d660930253afcb693298b55dbff027b7aacce11b28

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6215e0519f9660372c44ef1945980d6c025f10bdceb0954ed8cd79c0492ef52f
MD5 58dbbca6f6065cfb8debd2b02d8827eb
BLAKE2b-256 48344ff30dd74c837d6297b2cc8e1df61ed42a90299ab8392b18c99507893fce

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f87a71ab32f2c3472baf7e585b990cc93bc5e3e19f8054d4f900f86c2b422c20
MD5 8b0462fb1061e6b848af2bd2655c28ae
BLAKE2b-256 bc67848dd3391c07f18634c97962c2c071e3b6c0a19de52f2b94e9dbe4bf8dca

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 259.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b38086530f26f91a55232c23ba89a3d9816cc4160fb5b15fe586b0d7c6532486
MD5 da0947b2b21cd7287fcfbd4b38b43f93
BLAKE2b-256 f95a84068026817166cc3bacace0b2e271ada4ebfc1c495570cfdfa75740e9bc

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp312-cp312-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp312-cp312-win32.whl
  • Upload date:
  • Size: 246.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c606ae984f4daf6315d17dacc070f19cb2e2dc1847ab774ab3365e7c73feb216
MD5 04da054fb9d2236e4276f4b53676b60f
BLAKE2b-256 dababb2f22b3c62b0cd081ebe90b2f12baf40d57d0f2048974d92114c8c3e52e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59d94166875d895eb18be03e09d2e62611f1c3f58de1a504c1b8d050a055c840
MD5 2cb6bd9ddf8032b325a8c8b65319c924
BLAKE2b-256 89da7082202e21b89adc5ea86156cebe8714cadde5a1cbc16032d11518e3411e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58748907cb47804cfced6ad22fc9732b08995eb350555336bcd125497cde8fb1
MD5 d011708873cb7ee22c5d15a5d8a84588
BLAKE2b-256 baca5112e3ca6de36a2cd0deb8c917f8f710d017b1b956d3e9527f34dd0cc0d1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6bc0e684c43b519fe9768c6bbd3a82e722234045ed7aed4343ab320d1769a98f
MD5 351e14c976e76a8b93bb6f47b30f3f86
BLAKE2b-256 42f1c5d4bf4a1114f57ae4a6fdebcff28c3140785ad48bf17a8ce81e45bd0bed

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 258.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a810a347a169bbfcf76d10742b61c3e7aaf32d8b616571dd9232356cf2e17960
MD5 c95ba3ce5d410f5952e4c23905155b03
BLAKE2b-256 1f0557777502c3e2a9d64e29bd3d7c2887643d9c71f49091949e379f3f8339c0

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp311-cp311-win32.whl
  • Upload date:
  • Size: 245.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e7a15de8c43f1aa677de30f20443d3de6002f5eac2bb66d018ce209a7bd202c0
MD5 dc38d04452fddeb273b25bbe1105ed1a
BLAKE2b-256 44c802912c29ba0f694f49489dae65a45d21747c5d6818383f41c3d2b9d302f0

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a44fef7a1338a91d86b20a6268d401b26097b9754141387d4603d5f2fb478df8
MD5 dd7e119791b1311f89bccb2b8c745e93
BLAKE2b-256 03a440a2c2986e111c8771e9be9fdd3c2b3fc2ebd49e7964e8a27649701a12e0

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66359d1936c05868acaff5ebdb10e9f92c789b06c5441fcc3addedbb7c483b16
MD5 05964a201d4ae32424bb8c82bebdd49e
BLAKE2b-256 1ad9b41471b67e17d90f636d98388ba4c72d03ed6cc9bf845902b85a258585d2

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9a2e744c7009b3a6f92934719f9f9acd23f0e95e4702297d8dbcf6d8ce56252
MD5 3b24f69b90dc94d0532c13ccb83cf720
BLAKE2b-256 e0a256ad1e81db96be76cfc3f0c550700d20ec22b18375080c0293df029218e2

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 257.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f95978a0db7a71b9aab29c79d1a5d0c3b907f1388ef84659beabbcf603a43f85
MD5 1261ce75742d0527fe09a5a6b66a238d
BLAKE2b-256 45af92a26ac78d5b5db272c6efc71b27bc531861efbfc3a9c50cb73f74e48847

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp310-cp310-win32.whl
  • Upload date:
  • Size: 245.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3aa3feead617dced7973bb28c11b286c272c933011466c810913b39ee9965d67
MD5 cc8ba01d6f2fc253c9a695a5195fdbd6
BLAKE2b-256 245c62148dc26e8d0ed762d1eef1d5f5645ae3df527439a5b0b67e809331f979

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66ae5d37dbb947da4052b1a8edc054e24801d846b2b081f5720c314a1b594d8c
MD5 f158450d1d56061b4de972cac8fa1373
BLAKE2b-256 dc5dc23305a6bd7d4fc250acb4310e51f8e8c1d4ec16716521ca65090daf0999

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab85e07fbc521630481ae59c43d9eb9ec6741b8922d36a44677b7fe117094e5c
MD5 abf4a6af75c2ac6b12600383a5641f6f
BLAKE2b-256 3b16979a20ad73b27aa66d36baaf57bbb7d878d7da6f366a9922ab0e45a64c3a

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9250d9b0ce1f869698e33926d102989087e0b5f894512d11ff54f9aa3daef926
MD5 6b1881b19ec306bd193bf5d244baba08
BLAKE2b-256 80330b3d30f1dcd9ac1e31b96a5b2e1ac80cd5bc5f48b4aa8d21fff3bdeb65d8

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 258.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 79f2038e6991986e63caa295a49e3cb0f53abfa393626c3527bd71afb1013a71
MD5 1ac8615fbb90bb1c4a216daf9c333059
BLAKE2b-256 ae0496d66e02ea66bcb345dc976f5dbe4a8fde5bfd209f15ad3dbe0fc224ffb5

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 246.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8e18492460625eba4f5a1cd29255f50e3ab7df71d2a48e77d8d262f5a252a1c6
MD5 2967c017dd78ca83ad00c3ae1fba9ac7
BLAKE2b-256 caff053fa0d683e1e6c257b4b9ded2246f77a748656e48ae17ed55198e1f06ff

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a33273e1c7d0b92d177f6d1077c1306e7a89aec6a0a6b4df27650dd4ddccf510
MD5 4d21f4eaa6dd897cf8040c401fc085fd
BLAKE2b-256 684a033988b48b8944ce4a01b0de4e16c86e20d22abd886ddef903a0a8de9fbe

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60563fc7a5058c5aaf597752103686f34fec44b6802e64eca6c298af64e8621a
MD5 e754d5ea69ccdd564667efe6ee40fa0a
BLAKE2b-256 bb39db123847045ae372060d30172f8e31a87963a12e49a04b1542d30eaa495e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca34d9be9961f0ec4ca77ea9c98d96c2944dfade6c8a08f5e9fa866b5130e662
MD5 4a00ee5692c8d0107ca7e34e12d5ec2b
BLAKE2b-256 3074ef8c6b34141b6f7743a6e66909ecbb1f85abe9eb984081a419ec1375a550

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 258.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 358103378a5df1941926dcca796d3c981e84ad6ffde87116a859e785d89d4158
MD5 f9d116c83eb5bbf0a8927761810df779
BLAKE2b-256 acac72ac327a9cc326122d00f30b833bc113ff90573d95f04aefa46f19a878f8

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 246.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0c60e8b39f8724b6e8e6e91c73fd4327a90a594fa4d3804d7378ee2a48c402f4
MD5 a22877b572ba5f7c8db8de243cb94513
BLAKE2b-256 9ade7c326b5dce8d5046f0c58e977b2a9600c3d9543fe4e4d81314a633ad6746

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 407dd205422ca0cf19cd4d08adaab5861105879e159c3e61dc5f28e2d0b6a132
MD5 b8e2089464f0ebb2678eaace76670183
BLAKE2b-256 627710714d2cc950815be98b2e3e78db03113bb96e33d1e384d49e75e138b435

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88a00a3242b7885a79285e66420561cf7655b3caa974c0137911b841e7d1277d
MD5 cfc39772e8643f1994a6f57e53d44420
BLAKE2b-256 fe086355063fbb54fe0ef11201e7df5b255486ac5f8b75d347fdc65e439118b9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 744231ff80d91ac3c81c1b20acf37589240207137d76d0f4f8f787edaff0d5b9
MD5 7488c23eddab2483566fc3f75086ff8f
BLAKE2b-256 0801a91d1c0f2257f750313080c17fb62c207a4449951cda0a5e614861148d48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page