Skip to main content

Building the Keras projects docs.

Project description

keras-autodoc

Autodoc for mkdocs.

keras-autodoc will fetch the docstrings from the functions you wish to document and will insert them in the markdown files.

Take a look at the documentation!

Install

pip install keras-autodoc

We recommend pinning the version (eg: pip install keras-autodoc==0.3.2). We may break compatibility without any warning.

Example

Let's suppose that you have a docs directory:

./docs
|-- autogen.py
|-- mkdocs.yml

The API is quite simple:

# content of docs/autogen.py

from keras_autodoc import DocumentationGenerator


pages = {'layers/core.md': ['keras.layers.Dense', 'keras.layers.Flatten'],
         'callbacks.md': ['keras.callbacks.TensorBoard']}

doc_generator = DocumentationGenerator(pages)
doc_generator.generate('./sources')
# content of docs/mkdocs.yml

site_name: My_site
docs_dir: sources
site_description: 'My pretty site.'

nav:
    - Core: layers/core.md
    - Callbacks:
      - Some callbacks: callbacks.md

Call this Python code, then you just have to run:

mkdocs serve

and you'll be able to see your website at localhost:8000/callbacks.

Docstring format:

The docstrings used should use the The docstrings follow the Google Python Style Guide with markdown, or just plain markdown.

For example, let's take this class:

class ImageDataGenerator:
    """Generate batches of tensor image data with real-time data augmentation.

    The data will be looped over (in batches).

    # Arguments
        featurewise_center: Boolean.
            Set input mean to 0 over the dataset, feature-wise.
        zca_whitening: Boolean. Apply ZCA whitening.
        width_shift_range: Float, 1-D array-like or int
            - float: fraction of total width, if < 1, or pixels if >= 1.
            - 1-D array-like: random elements from the array.
            - int: integer number of pixels from interval
                `(-width_shift_range, +width_shift_range)`
            - With `width_shift_range=2` possible values
                are integers `[-1, 0, +1]`,
                same as with `width_shift_range=[-1, 0, +1]`,
                while with `width_shift_range=1.0` possible values are floats
                in the interval `[-1.0, +1.0)`.

    # Examples

    Example of using `.flow(x, y)`:
    ```python
    datagen = ImageDataGenerator(
        featurewise_center=True,
        zca_whitening=True,
        width_shift_range=0.2)
    # compute quantities required for featurewise normalization
    # (std, mean, and principal components if ZCA whitening is applied)
    datagen.fit(x_train)
    # fits the model on batches with real-time data augmentation:
    model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
                        steps_per_epoch=len(x_train) / 32, epochs=epochs)
    ```
    """

    def __init__(self,featurewise_center, zca_whitening, width_shift_range):
        pass

will be rendered as:

ImageDataGenerator class:

dummy_module.ImageDataGenerator(featurewise_center, zca_whitening, width_shift_range=0.0)

Generate batches of tensor image data with real-time data augmentation.

The data will be looped over (in batches).

Arguments

  • featurewise_center: Boolean. Set input mean to 0 over the dataset, feature-wise.
  • zca_whitening: Boolean. Apply ZCA whitening.
  • width_shift_range: Float, 1-D array-like or int
    • float: fraction of total width, if < 1, or pixels if >= 1.
    • 1-D array-like: random elements from the array.
    • int: integer number of pixels from interval (-width_shift_range, +width_shift_range)
    • With width_shift_range=2 possible values are integers [-1, 0, +1], same as with width_shift_range=[-1, 0, +1], while with width_shift_range=1.0 possible values are floats in the interval [-1.0, +1.0).

Examples

Example of using .flow(x, y):

datagen = ImageDataGenerator(
    featurewise_center=True,
    zca_whitening=True,
    width_shift_range=0.2)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
                    steps_per_epoch=len(x_train) / 32, epochs=epochs)

Take a look at our docs

If you want examples, you can take a look at the docs directory of autokeras as well as the generated docs.

You can also look at the docs directory of keras-tuner.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-autodoc-0.4.0.tar.gz (20.5 kB view details)

Uploaded Source

File details

Details for the file keras-autodoc-0.4.0.tar.gz.

File metadata

  • Download URL: keras-autodoc-0.4.0.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for keras-autodoc-0.4.0.tar.gz
Algorithm Hash digest
SHA256 3e9e9538eaafc836b9c8d25e9796e12065cdb787fd102bc527fe7b4deb3bc524
MD5 601db9025b9cb660629a97899f215a39
BLAKE2b-256 e64b18e08d280b4767623dae6fed14a3021c58b473553e04766544a1536c3f6d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page