Building the Keras projects docs.
Project description
keras-autodoc
keras-autodoc will fetch the docstrings from the functions you wish to document and will insert them in the markdown files.
Take a look at the documentation!
Install
pip install keras-autodoc
We recommend pinning the version (eg: pip install keras-autodoc==0.3.2
). We may break compatibility without any warning.
Example
Let's suppose that you have a docs
directory:
./docs
|-- autogen.py
|-- mkdocs.yml
The API is quite simple:
# content of docs/autogen.py
from keras_autodoc import DocumentationGenerator
pages = {'layers/core.md': ['keras.layers.Dense', 'keras.layers.Flatten'],
'callbacks.md': ['keras.callbacks.TensorBoard']}
doc_generator = DocumentationGenerator(pages)
doc_generator.generate('./sources')
# content of docs/mkdocs.yml
site_name: My_site
docs_dir: sources
site_description: 'My pretty site.'
nav:
- Core: layers/core.md
- Callbacks:
- Some callbacks: callbacks.md
Then you just have to run:
python autogen.py
mkdocs serve
and you'll be able to see your website at localhost:8000/callbacks.
Docstring format:
The docstrings used should use the The docstrings follow the Google Python Style Guide with markdown, or just plain markdown.
For example, let's take this class:
class ImageDataGenerator:
"""Generate batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches).
# Arguments
featurewise_center: Boolean.
Set input mean to 0 over the dataset, feature-wise.
zca_whitening: Boolean. Apply ZCA whitening.
width_shift_range: Float, 1-D array-like or int
- float: fraction of total width, if < 1, or pixels if >= 1.
- 1-D array-like: random elements from the array.
- int: integer number of pixels from interval
`(-width_shift_range, +width_shift_range)`
- With `width_shift_range=2` possible values
are integers `[-1, 0, +1]`,
same as with `width_shift_range=[-1, 0, +1]`,
while with `width_shift_range=1.0` possible values are floats
in the interval `[-1.0, +1.0)`.
# Examples
Example of using `.flow(x, y)`:
```python
datagen = ImageDataGenerator(
featurewise_center=True,
zca_whitening=True,
width_shift_range=0.2)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32, epochs=epochs)
```
"""
def __init__(self,featurewise_center, zca_whitening, width_shift_range):
pass
will be rendered as:
ImageDataGenerator class:
dummy_module.ImageDataGenerator(featurewise_center, zca_whitening, width_shift_range=0.0)
Generate batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches).
Arguments
- featurewise_center: Boolean. Set input mean to 0 over the dataset, feature-wise.
- zca_whitening: Boolean. Apply ZCA whitening.
- width_shift_range: Float, 1-D array-like or int
- float: fraction of total width, if < 1, or pixels if >= 1.
- 1-D array-like: random elements from the array.
- int: integer number of pixels from interval
(-width_shift_range, +width_shift_range)
- With
width_shift_range=2
possible values are integers[-1, 0, +1]
, same as withwidth_shift_range=[-1, 0, +1]
, while withwidth_shift_range=1.0
possible values are floats in the interval[-1.0, +1.0)
.
Examples
Example of using .flow(x, y)
:
datagen = ImageDataGenerator(
featurewise_center=True,
zca_whitening=True,
width_shift_range=0.2)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32, epochs=epochs)
Take a look at our docs
If you want examples, you can take a look at the docs directory of autokeras as well as the generated docs.
You can also look at the docs directory of keras-tuner.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-autodoc-0.5.1.tar.gz
.
File metadata
- Download URL: keras-autodoc-0.5.1.tar.gz
- Upload date:
- Size: 22.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a47d632361aee6a1f50a18d1304403c51e2c8eeaeccb6f995c3a78002fbe113c |
|
MD5 | 8ab79d29695ad900be1b7eeaa6d67443 |
|
BLAKE2b-256 | d037dc5121c3bfe1d150a1c59d01d4b129fc3257f79ee5fc477def4ceb5c900a |