Skip to main content

Industry-strength Natural Language Processing extensions for Keras.

Project description

KerasHub: Multi-framework Models

Python contributions welcome

[!IMPORTANT] 📢 KerasNLP is becoming KerasHub! 📢 Read the announcement.

We have renamed the repo to KerasHub in preparation for the release, but have not yet released the new package. Follow the announcement for news.

KerasHub is a library that supports natural language processing, computer vision, audio, and multimodal backbones and task models, working natively with TensorFlow, JAX, or PyTorch. KerasHub provides a repository of pre-trained models and a collection of lower-level building blocks for these tasks. Built on Keras 3, models can be trained and serialized in any framework and re-used in another without costly migrations.

This library is an extension of the core Keras API; all high-level modules are Layers and Models that receive that same level of polish as core Keras. If you are familiar with Keras, congratulations! You already understand most of KerasHub.

All models support JAX, TensorFlow, and PyTorch from a single model definition and can be fine-tuned on GPUs and TPUs out of the box. Models can be trained on individual accelerators with built-in PEFT techniques, or fine-tuned at scale with model and data parallel training. See our Getting Started guide to start learning our API. Browse our models on Kaggle. We welcome contributions.

Quick Links

For everyone

For contributors

Quickstart

Fine-tune a BERT classifier on IMDb movie reviews:

import os
os.environ["KERAS_BACKEND"] = "jax"  # Or "tensorflow" or "torch"!

import keras_nlp
import tensorflow_datasets as tfds

imdb_train, imdb_test = tfds.load(
    "imdb_reviews",
    split=["train", "test"],
    as_supervised=True,
    batch_size=16,
)

# Load a BERT model.
classifier = keras_nlp.models.Classifier.from_preset(
    "bert_base_en",
    num_classes=2,
    activation="softmax",
)

# Fine-tune on IMDb movie reviews.
classifier.fit(imdb_train, validation_data=imdb_test)
# Predict two new examples.
classifier.predict(["What an amazing movie!", "A total waste of my time."])

Try it out in a colab. For more in depth guides and examples, visit keras.io/keras_nlp.

Installation

KerasHub is currently in pre-release. Note that pre-release versions may introduce breaking changes to the API in future versions. For a stable and supported experience, we recommend installing keras-nlp version 0.15.1:

pip install keras-nlp==0.15.1

To try out the latest pre-release version of KerasHub, you can use our nightly package:

pip install keras-hub-nightly

KerasHub currently requires TensorFlow to be installed for use of the tf.data API for preprocessing. Even when pre-processing with tf.data, training can still happen on any backend.

Read Getting started with Keras for more information on installing Keras 3 and compatibility with different frameworks.

[!IMPORTANT] We recommend using KerasHub with TensorFlow 2.16 or later, as TF 2.16 packages Keras 3 by default.

Configuring your backend

If you have Keras 3 installed in your environment (see installation above), you can use KerasHub with any of JAX, TensorFlow and PyTorch. To do so, set the KERAS_BACKEND environment variable. For example:

export KERAS_BACKEND=jax

Or in Colab, with:

import os
os.environ["KERAS_BACKEND"] = "jax"

import keras_hub

[!IMPORTANT] Make sure to set the KERAS_BACKEND before importing any Keras libraries; it will be used to set up Keras when it is first imported.

Compatibility

We follow Semantic Versioning, and plan to provide backwards compatibility guarantees both for code and saved models built with our components. While we continue with pre-release 0.y.z development, we may break compatibility at any time and APIs should not be considered stable.

Disclaimer

KerasHub provides access to pre-trained models via the keras_hub.models API. These pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The following underlying models are provided by third parties, and subject to separate licenses: BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper, and XLM-RoBERTa.

Citing KerasHub

If KerasHub helps your research, we appreciate your citations. Here is the BibTeX entry:

@misc{kerashub2024,
  title={KerasHub},
  author={Watson, Matthew, and  Chollet, Fran\c{c}ois and Sreepathihalli,
  Divyashree, and Saadat, Samaneh and Sampath, Ramesh, and Rasskin, Gabriel and
  and Zhu, Scott and Singh, Varun and Wood, Luke and Tan, Zhenyu and Stenbit,
  Ian and Qian, Chen, and Bischof, Jonathan and others},
  year={2024},
  howpublished={\url{https://github.com/keras-team/keras-hub}},
}

Acknowledgements

Thank you to all of our wonderful contributors!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file keras_hub_nightly-0.16.1.dev202410010346.tar.gz.

File metadata

File hashes

Hashes for keras_hub_nightly-0.16.1.dev202410010346.tar.gz
Algorithm Hash digest
SHA256 f7677db0bc9b5f0942e9f19ca059e6da4af58c76397ccaf9b6a4a36b64d4faf0
MD5 5476fcd8eb49a613acd17a3ad61288bd
BLAKE2b-256 c44ff6641058d663e922bdd265baa60fc9eabd053177119ce3234b946ba63f10

See more details on using hashes here.

File details

Details for the file keras_hub_nightly-0.16.1.dev202410010346-py3-none-any.whl.

File metadata

File hashes

Hashes for keras_hub_nightly-0.16.1.dev202410010346-py3-none-any.whl
Algorithm Hash digest
SHA256 535238f848a2c0a246c641fd7976d86cdf72d02dd3aff55a06e6156822957bf7
MD5 898c3716a1fcd9ef5c2b706a357d3a36
BLAKE2b-256 9bf9e9663be98916f485651a47ee308331230e146c6e004a4a5fac371b73a7dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page