Skip to main content

Industry-strength Natural Language Processing extensions for Keras.

Project description

KerasNLP

Python Tensorflow contributions welcome

KerasNLP is a repository of modular building blocks (layers, metrics, losses). Engineers working with applied natural language processing can leverage it to rapidly assemble training and inference pipelines that are both state-of-the-art and production-grade. Common use cases for application include sentiment analysis, named entity recognition, text generation, etc.

KerasNLP can be understood as a horizontal extension of the Keras API: they're new first-party Keras objects (layers, metrics, etc) that are too specialized to be added to core Keras, but that receive the same level of polish and backwards compatibility guarantees as the rest of the Keras API and that are maintained by the Keras team itself (unlike TFAddons).

Currently, KerasNLP is operating pre-release. Upon launch of KerasNLP 1.0, full API docs and code examples will be available.

Contributors

If you'd like to contribute, please see our contributing guide.

The fastest way to find a place to contribute is to browse our open issues and find an unclaimed issue to work on. We tag good introductory issues with the good first issue label.

If you would like to propose a new symbol or feature, please open an issue to discuss. Be aware the design for new features may take longer at this early stage. If you have a design in mind, please include a colab notebook showing the proposed design in a end-to-end example.

Roadmap

This is an early stage project, and we are actively working on a more detailed roadmap to share soon. For now, most of our immediate planning is done through GitHub issues.

At this stage, we are primarily building components for a short list of "greatest hits" NLP models (e.g. BERT, GPT-2, word2vec). We will be focusing on components that follow a established Keras interface (e.g. keras.layers.Layer, keras.metrics.Metric, or keras_nlp.tokenizers.Tokenizer).

As we progress further with the library, we will attempt to cover an ever expanding list of widely cited model architectures.

Compatibility

We follow Semantic Versioning, and plan to provide backwards compatibility guarantees both for code and saved models built with our components. While we continue with pre-release 0.y.z development, we may break compatibility at any time and APIs should not be consider stable.

Thank you to all of our wonderful contributors!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-nlp-0.1.0.tar.gz (37.6 kB view hashes)

Uploaded Source

Built Distribution

keras_nlp-0.1.0-py3-none-any.whl (60.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page