Skip to main content

Industry-strength Natural Language Processing extensions for Keras.

Project description

KerasNLP

Python Tensorflow contributions welcome

KerasNLP is a simple and powerful API for building Natural Language Processing (NLP) models within the Keras ecosystem.

KerasNLP provides modular building blocks following standard Keras interfaces (layers, metrics) that allow you to quickly and flexibly iterate on your task. Engineers working in applied NLP can leverage the library to assemble training and inference pipelines that are both state-of-the-art and production-grade.

KerasNLP can be understood as a horizontal extension of the Keras API — components are first-party Keras objects that are too specialized to be added to core Keras, but that receive the same level of polish as the rest of the Keras API.

We are a new and growing project, and welcome contributions.

Quick Links

Quick Start

Install the latest release:

pip install keras-nlp --upgrade

Tokenize text, build a tiny transformer, and train a single batch:

import keras_nlp
import tensorflow as tf
from tensorflow import keras

# Tokenize some inputs with a binary label.
vocab = ["[UNK]", "the", "qu", "##ick", "br", "##own", "fox", "."]
sentences = ["The quick brown fox jumped.", "The fox slept."]
tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(
    vocabulary=vocab,
    sequence_length=10,
)
x, y = tokenizer(sentences), tf.constant([1, 0])

# Create a tiny transformer.
inputs = keras.Input(shape=(None,), dtype="int32")
outputs = keras_nlp.layers.TokenAndPositionEmbedding(
    vocabulary_size=len(vocab),
    sequence_length=10,
    embedding_dim=16,
)(inputs)
outputs = keras_nlp.layers.TransformerEncoder(
    num_heads=4,
    intermediate_dim=32,
)(outputs)
outputs = keras.layers.GlobalAveragePooling1D()(outputs)
outputs = keras.layers.Dense(1, activation="sigmoid")(outputs)
model = keras.Model(inputs, outputs)

# Run a single batch of gradient descent.
model.compile(loss="binary_crossentropy", jit_compile=True)
model.train_on_batch(x, y)

Compatibility

We follow Semantic Versioning, and plan to provide backwards compatibility guarantees both for code and saved models built with our components. While we continue with pre-release 0.y.z development, we may break compatibility at any time and APIs should not be consider stable.

Citing KerasNLP

If KerasNLP helps your research, we appreciate your citations. Here is the BibTeX entry:

@misc{kerasnlp2022,
  title={KerasNLP},
  author={Watson, Matthew, and Qian, Chen, and Zhu, Scott and Chollet, Fran\c{c}ois and others},
  year={2022},
  howpublished={\url{https://github.com/keras-team/keras-nlp}},
}

Thank you to all of our wonderful contributors!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-nlp-0.2.0.tar.gz (68.1 kB view details)

Uploaded Source

Built Distribution

keras_nlp-0.2.0-py3-none-any.whl (111.0 kB view details)

Uploaded Python 3

File details

Details for the file keras-nlp-0.2.0.tar.gz.

File metadata

  • Download URL: keras-nlp-0.2.0.tar.gz
  • Upload date:
  • Size: 68.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for keras-nlp-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d5f7bc161a7ffb0dcdce87546373bf91bee3245f050f308a88634b9a02a02845
MD5 c722268ea09612820ae18f24a1660d4f
BLAKE2b-256 b1d39723057d6009439fb7f1575a3ca8a3b26d5cfa711c6c6fb9458846ed734b

See more details on using hashes here.

Provenance

File details

Details for the file keras_nlp-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: keras_nlp-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 111.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for keras_nlp-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a81a617c3fcea20d693cbef6400d534c834a6e8c49f765e06ab1eb4e50d055e0
MD5 cffcbc1a4c6a5574dbd2d2b386b775f4
BLAKE2b-256 0aff0d527353c0183b18cc53dcb080b46515e5efce62669662c45af5f91031b0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page