Skip to main content

Industry-strength Natural Language Processing extensions for Keras.

Project description

KerasNLP: Modular NLP Workflows for Keras

Python Tensorflow contributions welcome

KerasNLP is a natural language processing library that supports users through their entire development cycle. Our workflows are built from modular components that have state-of-the-art preset weights and architectures when used out-of-the-box and are easily customizable when more control is needed. We emphasize in-graph computation for all workflows so that developers can expect easy productionization using the TensorFlow ecosystem.

This library is an extension of the core Keras API; all high-level modules are Layers or Models that recieve that same level of polish as core Keras. If you are familiar with Keras, congratulations! You already understand most of KerasNLP.

See our Getting Started guide for example usage of our modular API starting with evaluating pretrained models and building up to designing a novel transformer architecture and training a tokenizer from scratch.

We are a new and growing project and welcome contributions.

Quick Links

For everyone

For contributors

Installation

To install the latest official release:

pip install keras-nlp tensorflow --upgrade

To install the latest unreleased changes to the library, we recommend using pip to install directly from the master branch on github:

pip install git+https://github.com/keras-team/keras-nlp.git tensorflow --upgrade

Quickstart

Fine-tune BERT on a small sentiment analysis task using the keras_nlp.models API:

import keras_nlp
from tensorflow import keras
import tensorflow_datasets as tfds

imdb_train, imdb_test = tfds.load(
    "imdb_reviews",
    split=["train", "test"],
    as_supervised=True,
    batch_size=16,
)
classifier = keras_nlp.models.BertClassifier.from_preset(
    "bert_base_en_uncased",
)
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    metrics=keras.metrics.SparseCategoricalAccuracy(),
    jit_compile=True,
)
classifier.fit(
    imdb_train,
    validation_data=imdb_test,
    epochs=1,
)

# Predict a new example
classifier.predict(["What an amazing movie, three hours of pure bliss!"])

For more in depth guides and examples, visit https://keras.io/keras_nlp/.

Compatibility

We follow Semantic Versioning, and plan to provide backwards compatibility guarantees both for code and saved models built with our components. While we continue with pre-release 0.y.z development, we may break compatibility at any time and APIs should not be consider stable.

Disclaimer

KerasNLP provides access to pre-trained models via the keras_nlp.models API. These pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The following underlying models are provided by third parties, and subject to separate licenses: DistilBERT, RoBERTa, XLM-RoBERTa, DeBERTa, and GPT-2.

Citing KerasNLP

If KerasNLP helps your research, we appreciate your citations. Here is the BibTeX entry:

@misc{kerasnlp2022,
  title={KerasNLP},
  author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet, 
  Fran\c{c}ois and others},
  year={2022},
  howpublished={\url{https://github.com/keras-team/keras-nlp}},
}

Acknowledgements

Thank you to all of our wonderful contributors!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-nlp-0.4.1.dev0.tar.gz (245.0 kB view details)

Uploaded Source

Built Distribution

keras_nlp-0.4.1.dev0-py3-none-any.whl (466.9 kB view details)

Uploaded Python 3

File details

Details for the file keras-nlp-0.4.1.dev0.tar.gz.

File metadata

  • Download URL: keras-nlp-0.4.1.dev0.tar.gz
  • Upload date:
  • Size: 245.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for keras-nlp-0.4.1.dev0.tar.gz
Algorithm Hash digest
SHA256 b20e3c72cd7dbac03a7b5998e26a501f619b0e092384112d85817aa391d81ebf
MD5 242cc7cff91dc4f00d9818cd94d9b07c
BLAKE2b-256 e93a03e79ba260007a97c94ff724785a0b4e0b6c13f593f6ee3d43218c182d19

See more details on using hashes here.

Provenance

File details

Details for the file keras_nlp-0.4.1.dev0-py3-none-any.whl.

File metadata

File hashes

Hashes for keras_nlp-0.4.1.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 fc054ef10374f819859f38a5f729259c923aa15efd3e2a08fc61f58bf504465c
MD5 03696f134dc55422558c80cc845a12ce
BLAKE2b-256 5933ff74f55a97d9e682db33de143ecd04eb1b39db0de183fe2945226adff44e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page