Skip to main content

Industry-strength Natural Language Processing extensions for Keras.

Project description

KerasNLP: Modular NLP Workflows for Keras

Python Tensorflow contributions welcome

KerasNLP is a natural language processing library that supports users through their entire development cycle. Our workflows are built from modular components that have state-of-the-art preset weights and architectures when used out-of-the-box and are easily customizable when more control is needed. We emphasize in-graph computation for all workflows so that developers can expect easy productionization using the TensorFlow ecosystem.

This library is an extension of the core Keras API; all high-level modules are Layers or Models that receive that same level of polish as core Keras. If you are familiar with Keras, congratulations! You already understand most of KerasNLP.

See our Getting Started guide for example usage of our modular API starting with evaluating pretrained models and building up to designing a novel transformer architecture and training a tokenizer from scratch.

We are a new and growing project and welcome contributions.

Quick Links

For everyone

For contributors

Installation

To install the latest official release:

pip install keras-nlp --upgrade

To install the latest unreleased changes to the library, we recommend using pip to install directly from the master branch on github:

pip install git+https://github.com/keras-team/keras-nlp.git --upgrade

Quickstart

Fine-tune BERT on a small sentiment analysis task using the keras_nlp.models API:

import keras_nlp
import tensorflow_datasets as tfds

imdb_train, imdb_test = tfds.load(
    "imdb_reviews",
    split=["train", "test"],
    as_supervised=True,
    batch_size=16,
)
# Load a BERT model.
classifier = keras_nlp.models.BertClassifier.from_preset(
    "bert_base_en_uncased", 
    num_classes=2,
)
# Fine-tune on IMDb movie reviews.
classifier.fit(imdb_train, validation_data=imdb_test)
# Predict two new examples.
classifier.predict(["What an amazing movie!", "A total waste of my time."])

For more in depth guides and examples, visit https://keras.io/keras_nlp/.

Compatibility

We follow Semantic Versioning, and plan to provide backwards compatibility guarantees both for code and saved models built with our components. While we continue with pre-release 0.y.z development, we may break compatibility at any time and APIs should not be consider stable.

Disclaimer

KerasNLP provides access to pre-trained models via the keras_nlp.models API. These pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The following underlying models are provided by third parties, and subject to separate licenses: BART, DeBERTa, DistilBERT, GPT-2, OPT, RoBERTa, Whisper, and XLM-RoBERTa.

Citing KerasNLP

If KerasNLP helps your research, we appreciate your citations. Here is the BibTeX entry:

@misc{kerasnlp2022,
  title={KerasNLP},
  author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet, 
  Fran\c{c}ois and others},
  year={2022},
  howpublished={\url{https://github.com/keras-team/keras-nlp}},
}

Acknowledgements

Thank you to all of our wonderful contributors!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-nlp-0.5.0.dev4.tar.gz (262.4 kB view details)

Uploaded Source

Built Distribution

keras_nlp-0.5.0.dev4-py3-none-any.whl (526.0 kB view details)

Uploaded Python 3

File details

Details for the file keras-nlp-0.5.0.dev4.tar.gz.

File metadata

  • Download URL: keras-nlp-0.5.0.dev4.tar.gz
  • Upload date:
  • Size: 262.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for keras-nlp-0.5.0.dev4.tar.gz
Algorithm Hash digest
SHA256 69307d12197dab550ece43c35e24ecd1f39c3e624d4fe3f1352b8c33b459bbd9
MD5 0a1765ae2de0cdbaec212e5d5f5134a5
BLAKE2b-256 5798142fb92aa7c4ae65175bfb4f2d00ff0e46c4aed53f2403b5e623e16f64b1

See more details on using hashes here.

Provenance

File details

Details for the file keras_nlp-0.5.0.dev4-py3-none-any.whl.

File metadata

File hashes

Hashes for keras_nlp-0.5.0.dev4-py3-none-any.whl
Algorithm Hash digest
SHA256 94e5851d8046bc4c2c5663602a6aacad436618f1383e78679b237bfbd720eea7
MD5 87500f381acf85f255c57a25d662bec7
BLAKE2b-256 75d27004e89fe1b02f616be02ff39742b384057155d8ac80e3aa40012c19f491

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page