Skip to main content

Converts Machine Learning models to ONNX for use in Windows ML

Project description

Introduction

keras2onnx enables you convert the keras models into ONNX. Initially Keras converter was developer in the project onnxmltools. To support more kinds of keras models and reduce the complexity of mixing multiple converters, keras2onnx was created to convert the keras model only.

keras2onnx supports the keras lambda/custom layer by parsing the TF graph built from Keras model. More intro will be coming soon...

Testing

Validate pre-trained Keras application models

It will be useful to convert the models from Keras to ONNX from a python script. You can use the following API:

import keras2onnx
keras2onnx.convert_keras(model, name=None, doc_string='', target_opset=None, channel_first_inputs=None):
    # type: (keras.Model, str, str, int, []) -> onnx.ModelProto
    """
    :param model: keras model
    :param name: the converted onnx model internal name
    :param doc_string:
    :param target_opset:
    :param channel_first_inputs: A list of channel first input.
    :return:
    """

Use the following script to convert keras application models to onnx, and then perform inference:

import numpy as np
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input
import keras2onnx
import onnxruntime

# image preprocessing
img_path = 'elephant.jpg'   # make sure the image is in img_path
img_size = 224
img = image.load_img(img_path, target_size=(img_size, img_size))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# load keras model
from keras.applications.resnet50 import ResNet50
model = ResNet50(include_top=True, weights='imagenet')

# convert to onnx model
onnx_model = keras2onnx.convert_keras(model, model.name)

# runtime prediction
content = onnx_model.SerializeToString()
sess = onnxruntime.InferenceSession(content)
x = x if isinstance(x, list) else [x]
feed = dict([(input.name, x[n]) for n, input in enumerate(sess.get_inputs())])
pred_onnx = sess.run(None, feed)

An alternative way to load onnx model to runtime session is to save the model first:

import onnx
temp_model_file = 'model.onnx'
onnx.save_model(onnx_model, temp_model_file)
sess = onnxruntime.InferenceSession(temp_model_file)

We converted successfully for the keras application models such as: Xception, VGG16, VGG19, ResNet50, InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, DenseNet121, DenseNet169, DenseNet201. Try the following models and convert them to onnx using the code above.

from keras.applications.xception import Xception
model = Xception(include_top=True, weights='imagenet')

from keras.applications.vgg16 import VGG16
model = VGG16(include_top=True, weights='imagenet')

from keras.applications.vgg19 import VGG19
model = VGG19(include_top=True, weights='imagenet')

from keras.applications.resnet50 import ResNet50
model = ResNet50(include_top=True, weights='imagenet')

from keras.applications.inception_v3 import InceptionV3
model = InceptionV3(include_top=True, weights='imagenet')

from keras.applications.inception_resnet_v2 import InceptionResNetV2
model = InceptionResNetV2(include_top=True, weights='imagenet')

from keras.applications import mobilenet
model = mobilenet.MobileNet(weights='imagenet')

from keras.applications import mobilenet_v2
model = mobilenet_v2.MobileNetV2(weights='imagenet')

from keras.applications.densenet import DenseNet121
model = DenseNet121(include_top=True, weights='imagenet')

from keras.applications.densenet import DenseNet169
model = DenseNet169(include_top=True, weights='imagenet')

from keras.applications.densenet import DenseNet201
model = DenseNet201(include_top=True, weights='imagenet')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

keras2onnx-1.3.0-py3-none-any.whl (50.5 kB view details)

Uploaded Python 3

File details

Details for the file keras2onnx-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: keras2onnx-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 50.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for keras2onnx-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7b755ed49f330510506c9e0b70beedfd966089d529b42afebae301bb33ca6fec
MD5 dede36e79ac57538e6291b8ebf6ecaad
BLAKE2b-256 0649d65c82afefb063d5143874c21a457ce968a21ecfb44092873565411a5a4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page