Jupyter Notebook operator for Kubeflow Pipelines
Project description
KFP-Notebook is an operator that enable running notebooks as part of a Kubeflow Pipeline.
Building kfp-notebook
make clean install
Usage
The example below can easily be added to a python script
or jupyter notebook
for testing purposes.
import os
import kfp
from notebook.pipeline import NotebookOp
from kubernetes.client.models import V1EnvVar
# KubeFlow Pipelines API Endpoint
kfp_url = 'http://dataplatform.ibm.com:32488/pipeline'
# S3 Object Storage
cos_endpoint = 'http://s3.us-south.cloud-object-storage.appdomain.cloud'
cos_bucket = 'test-bucket'
cos_username = 'test'
cos_password = 'test123'
cos_directory = 'test-directory'
cos_pull_archive = 'test-archive.tar.gz'
# Inputs and Outputs
inputs = []
outputs = []
# Container Image
image = 'tensorflow/tensorflow:latest'
def run_notebook_op(op_name, notebook_path):
notebook_op = NotebookOp(name=op_name,
notebook=op_name,
cos_endpoint=cos_endpoint,
cos_bucket=cos_bucket,
cos_directory=cos_directory,
cos_pull_archive=cos_pull_archive,
pipeline_outputs=outputs,
pipeline_inputs=inputs,
image=image)
notebook_op.container.add_env_variable(V1EnvVar(name='AWS_ACCESS_KEY_ID', value=cos_username))
notebook_op.container.add_env_variable(V1EnvVar(name='AWS_SECRET_ACCESS_KEY', value=cos_password))
notebook_op.container.set_image_pull_policy('Always')
return op
def demo_pipeline():
stats_op = run_notebook_op('stats', 'generate-community-overview')
contributions_op = run_notebook_op('contributions', 'generate-community-contributions')
run_notebook_op('overview', 'overview').after(stats_op, contributions_op)
# Compile the new pipeline
kfp.compiler.Compiler().compile(demo_pipeline,'pipelines/pipeline.tar.gz')
# Upload the compiled pipeline
client = kfp.Client(host=kfp_url)
pipeline_info = client.upload_pipeline('pipelines/pipeline.tar.gz',pipeline_name='pipeline-demo')
# Create a new experiment
experiment = client.create_experiment(name='demo-experiment')
# Create a new run associated with experiment and our uploaded pipeline
run = client.run_pipeline(experiment.id, 'demo-run', pipeline_id=pipeline_info.id)
Generated Kubeflow Pipelines
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
kfp-notebook-0.10.3.tar.gz
(9.0 kB
view details)
Built Distribution
File details
Details for the file kfp-notebook-0.10.3.tar.gz
.
File metadata
- Download URL: kfp-notebook-0.10.3.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6f2e54e9fbf09a4521680c899f4ca95a558762b79a5b87622a233c15cb0f0e7 |
|
MD5 | 856eb637e7019a47fa1fb6474b77a4c3 |
|
BLAKE2b-256 | a74867bc65930976ad5aca83480f6abfefbec6c2b225003c9bef64eb2719273a |
File details
Details for the file kfp_notebook-0.10.3-py3-none-any.whl
.
File metadata
- Download URL: kfp_notebook-0.10.3-py3-none-any.whl
- Upload date:
- Size: 10.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20147559acf01251c95cab1d0375563b07df8b167e5a631345b2fae3225d30d8 |
|
MD5 | 659e589753c45844d75bcaf316317092 |
|
BLAKE2b-256 | eb245a221482be8896820bb0e0748724c927164b91cf2e2c8843a1008116c737 |