Skip to main content

Jupyter Notebook operator for Kubeflow Pipelines

Project description

KFP-Notebook is an operator that enable running notebooks as part of a Kubeflow Pipeline.

Building kfp-notebook

make clean install

Usage

The example below can easily be added to a python script or jupyter notebook for testing purposes.

import os
import kfp
from notebook.pipeline import NotebookOp
from kubernetes.client.models import V1EnvVar

# KubeFlow Pipelines API Endpoint
kfp_url = 'http://dataplatform.ibm.com:32488/pipeline'

# S3 Object Storage
cos_endpoint = 'http://s3.us-south.cloud-object-storage.appdomain.cloud'
cos_bucket = 'test-bucket'
cos_username = 'test'
cos_password = 'test123'
cos_directory = 'test-directory' 
cos_pull_archive = 'test-archive.tar.gz'

# Inputs and Outputs
inputs = []
outputs = []

# Container Image
image = 'tensorflow/tensorflow:latest'

def run_notebook_op(op_name, notebook_path):

    notebook_op = NotebookOp(name=op_name,
                             notebook=op_name,
                             cos_endpoint=cos_endpoint,
                             cos_bucket=cos_bucket,
                             cos_directory=cos_directory,
                             cos_pull_archive=cos_pull_archive,
                             pipeline_outputs=outputs,
                             pipeline_inputs=inputs,
                             image=image)

    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_ACCESS_KEY_ID', value=cos_username))
    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_SECRET_ACCESS_KEY', value=cos_password))
    notebook_op.container.set_image_pull_policy('Always')

    return op

def demo_pipeline():
    stats_op = run_notebook_op('stats', 'generate-community-overview')
    contributions_op = run_notebook_op('contributions', 'generate-community-contributions')
    run_notebook_op('overview', 'overview').after(stats_op, contributions_op)

# Compile the new pipeline
kfp.compiler.Compiler().compile(demo_pipeline,'pipelines/pipeline.tar.gz')

# Upload the compiled pipeline
client = kfp.Client(host=kfp_url)
pipeline_info = client.upload_pipeline('pipelines/pipeline.tar.gz',pipeline_name='pipeline-demo')

# Create a new experiment
experiment = client.create_experiment(name='demo-experiment')

# Create a new run associated with experiment and our uploaded pipeline
run = client.run_pipeline(experiment.id, 'demo-run', pipeline_id=pipeline_info.id)

Generated Kubeflow Pipelines

Kubeflow Pipeline Example

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfp-notebook-0.11.0.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

kfp_notebook-0.11.0-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file kfp-notebook-0.11.0.tar.gz.

File metadata

  • Download URL: kfp-notebook-0.11.0.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.8

File hashes

Hashes for kfp-notebook-0.11.0.tar.gz
Algorithm Hash digest
SHA256 72d57cb3a32e3740f50fb0a5d5c36703a855510fd14b12b01c2273ab9c8b1d6d
MD5 ea8b3d6632480a2b2a774095b0a3d67e
BLAKE2b-256 faf406eae528232a149f60e949f13928f469b128ab26a58e4eb595555a60e805

See more details on using hashes here.

File details

Details for the file kfp_notebook-0.11.0-py3-none-any.whl.

File metadata

  • Download URL: kfp_notebook-0.11.0-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.8

File hashes

Hashes for kfp_notebook-0.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 02d207837a26530345e78b54c910c8d51a92fa005cf9910761e14a9672f0677c
MD5 7aebd809dc70f281fd036e73d0cabb11
BLAKE2b-256 4972675e1176800c346939e396f80452ea8748cb0b0c61cdac4552ae0a0126c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page