Skip to main content

Jupyter Notebook operator for Kubeflow Pipelines

Project description

KFP-Notebook is an operator that enable running notebooks as part of a Kubeflow Pipeline.

Building kfp-notebook

make clean install

Usage

The example below can easily be added to a python script or jupyter notebook for testing purposes.

import os
import kfp
from kfp_notebook.pipeline import NotebookOp
from kubernetes.client.models import V1EnvVar

# KubeFlow Pipelines API Endpoint
kfp_url = 'http://dataplatform.ibm.com:32488/pipeline'

# S3 Object Storage
cos_endpoint = 'http://s3.us-south.cloud-object-storage.appdomain.cloud'
cos_bucket = 'test-bucket'
cos_username = 'test'
cos_password = 'test123'
cos_directory = 'test-directory'
cos_dependencies_archive = 'test-archive.tar.gz'

# Inputs and Outputs
inputs = []
outputs = []

# Container Image
image = 'tensorflow/tensorflow:latest'

def run_notebook_op(op_name, notebook_path):

    notebook_op = NotebookOp(name=op_name,
                             notebook=notebook_path,
                             cos_endpoint=cos_endpoint,
                             cos_bucket=cos_bucket,
                             cos_directory=cos_directory,
                             cos_dependencies_archive=cos_dependencies_archive,
                             pipeline_outputs=outputs,
                             pipeline_inputs=inputs,
                             image=image)

    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_ACCESS_KEY_ID', value=cos_username))
    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_SECRET_ACCESS_KEY', value=cos_password))
    notebook_op.container.set_image_pull_policy('Always')

    return op

def demo_pipeline():
    stats_op = run_notebook_op('stats', 'generate-community-overview')
    contributions_op = run_notebook_op('contributions', 'generate-community-contributions')
    run_notebook_op('overview', 'overview').after(stats_op, contributions_op)

# Compile the new pipeline
kfp.compiler.Compiler().compile(demo_pipeline,'pipelines/pipeline.tar.gz')

# Upload the compiled pipeline
client = kfp.Client(host=kfp_url)
pipeline_info = client.upload_pipeline('pipelines/pipeline.tar.gz',pipeline_name='pipeline-demo')

# Create a new experiment
experiment = client.create_experiment(name='demo-experiment')

# Create a new run associated with experiment and our uploaded pipeline
run = client.run_pipeline(experiment.id, 'demo-run', pipeline_id=pipeline_info.id)

Generated Kubeflow Pipelines

Kubeflow Pipeline Example

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfp-notebook-0.15.0.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

kfp_notebook-0.15.0-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file kfp-notebook-0.15.0.tar.gz.

File metadata

  • Download URL: kfp-notebook-0.15.0.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for kfp-notebook-0.15.0.tar.gz
Algorithm Hash digest
SHA256 9b972ae7d37887b5a7d4358005019b324804f43b181b766ffc50ddd2646a7267
MD5 d30e890d1095bffb03ea41ec1af18f05
BLAKE2b-256 72e5bdcd12c4791fb76afc98b67e88f94965db1facfa6299b9415fdd24596c8b

See more details on using hashes here.

File details

Details for the file kfp_notebook-0.15.0-py3-none-any.whl.

File metadata

  • Download URL: kfp_notebook-0.15.0-py3-none-any.whl
  • Upload date:
  • Size: 11.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for kfp_notebook-0.15.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5490a4df42ef098cd1f79c1b76a860c6d49906c53afa4149e8a6c1c5fbcdfca6
MD5 ee45024789477348d80be3c5ff95104a
BLAKE2b-256 48ec006a53469db18afbbdf8c2e61c73ec145dac0915408dae2316678576b536

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page