Skip to main content

Jupyter Notebook operator for Kubeflow Pipeline.

Project description

KFP-Notebook is an Notebook op to enable running notebooks as part of a Kubeflow Pipeline.

Building kfp-notebook

make clean install

Usage

The example below can easily be added to a python script or jupyter notebook for testing purposes.

import os
import kfp
from notebook.pipeline._notebook_op import NotebookOp
from kubernetes.client.models import V1EnvVar, V1SecretKeySelector

url = 'http://weakish1.fyre.ibm.com:32488/pipeline'

# configures artifact location
notebook_location = kfp.dsl.ArtifactLocation.s3(
        bucket="oscon",
        endpoint="weakish1.fyre.ibm.com:30427",
        insecure=True,
        access_key_secret=V1SecretKeySelector(name="mlpipeline-minio-artifact", key="accesskey"),
        secret_key_secret=V1SecretKeySelector(name="mlpipeline-minio-artifact", key="secretkey"))

def run_notebook_op(op_name, notebook_path):
    op= NotebookOp(
        name=op_name,
        notebook=notebook_path,
        cos_endpoint='http://weakish1.fyre.ibm.com:30427',
        cos_user='minio',
        cos_password='minio123',
        image='lresende/notebook-kubeflow-pipeline:dev',
        artifact_location=notebook_location,
    )
    op.container.set_image_pull_policy('Always')

    return op

def demo_pipeline():
    stats_op = run_notebook_op('stats', 'generate-community-overview')
    contributions_op = run_notebook_op('contributions', 'generate-community-contributions')
    run_notebook_op('overview', 'overview').after(stats_op, contributions_op)

# Compile the new pipeline
kfp.compiler.Compiler().compile(demo_pipeline,'pipelines/oscon_pipeline.tar.gz')

# Upload the compiled pipeline
client = kfp.Client(host=url)
client.upload_pipeline('pipelines/oscon_pipeline.tar.gz',pipeline_name='oscon-pipeline')
#experiment = client.create_experiment(name='oscon-community-stats')
#run = client.run_pipeline(experiment.id, 'oscon-community-stats', 'pipelines/community_pipeline.tar.gz')

Generated Kubeflow Pipelines

Kubeflow Pipeline Example

Project details


Release history Release notifications | RSS feed

This version

0.6.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfp-notebook-0.6.0.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

kfp_notebook-0.6.0-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file kfp-notebook-0.6.0.tar.gz.

File metadata

  • Download URL: kfp-notebook-0.6.0.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for kfp-notebook-0.6.0.tar.gz
Algorithm Hash digest
SHA256 ef735090e983ad0794bcbaf2e54682609212a03a81189c387e6722fbec81ff58
MD5 55872624d04e8d2e79ae35ed4615a1c1
BLAKE2b-256 0b30abf18fa45aef0134540d58b77b83015316f33a73ed0c0b022fea015e8de6

See more details on using hashes here.

File details

Details for the file kfp_notebook-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: kfp_notebook-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for kfp_notebook-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cad13f380c86cfe034da3136977afc4dd9970d1642e242ee6ed7c15799bfde86
MD5 f9637a8d445ef9d30e7d4dfc13a188aa
BLAKE2b-256 4c556e84deb2c0d9b5f32dda02d4b4b736a2a03259b60e9f17cf864d3248a928

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page