Skip to main content

Jupyter Notebook operator for Kubeflow Pipeline.

Project description

KFP-Notebook is an operator that enable running notebooks as part of a Kubeflow Pipeline.

Building kfp-notebook

make clean install

Usage

The example below can easily be added to a python script or jupyter notebook for testing purposes.

import os
import kfp
from notebook.pipeline import NotebookOp
from kubernetes.client.models import V1EnvVar

# KubeFlow Pipelines API Endpoint
kfp_url = 'http://dataplatform.ibm.com:32488/pipeline'

# S3 Object Storage
cos_endpoint = 'http://s3.us-south.cloud-object-storage.appdomain.cloud'
cos_bucket = 'test-bucket'
cos_username = 'test'
cos_password = 'test123'
cos_directory = 'test-directory' 
cos_pull_archive = 'test-archive.tar.gz'

# Inputs and Outputs
inputs = []
outputs = []

# Container Image
image = 'tensorflow/tensorflow:latest'

def run_notebook_op(op_name, notebook_path):

    notebook_op = NotebookOp(name=op_name,
                             notebook=op_name,
                             cos_endpoint=cos_endpoint,
                             cos_bucket=cos_bucket,
                             cos_directory=cos_directory,
                             cos_pull_archive=cos_pull_archive,
                             pipeline_outputs=outputs,
                             pipeline_inputs=inputs,
                             image=image)

    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_ACCESS_KEY_ID', value=cos_username))
    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_SECRET_ACCESS_KEY', value=cos_password))
    notebook_op.container.set_image_pull_policy('Always')

    return op

def demo_pipeline():
    stats_op = run_notebook_op('stats', 'generate-community-overview')
    contributions_op = run_notebook_op('contributions', 'generate-community-contributions')
    run_notebook_op('overview', 'overview').after(stats_op, contributions_op)

# Compile the new pipeline
kfp.compiler.Compiler().compile(demo_pipeline,'pipelines/pipeline.tar.gz')

# Upload the compiled pipeline
client = kfp.Client(host=kfp_url)
pipeline_info = client.upload_pipeline('pipelines/pipeline.tar.gz',pipeline_name='pipeline-demo')

# Create a new experiment
experiment = client.create_experiment(name='demo-experiment')

# Create a new run associated with experiment and our uploaded pipeline
run = client.run_pipeline(experiment.id, 'demo-run', pipeline_id=pipeline_info.id)

Generated Kubeflow Pipelines

Kubeflow Pipeline Example

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfp-notebook-0.8.2.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

kfp_notebook-0.8.2-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file kfp-notebook-0.8.2.tar.gz.

File metadata

  • Download URL: kfp-notebook-0.8.2.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.1.post20200322 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for kfp-notebook-0.8.2.tar.gz
Algorithm Hash digest
SHA256 bc58a14219fdc9d29f50344c8ac88099aefea1792f82aa8f1a7c322f2e260f6e
MD5 cafaee5fcce5bdfc3bde660d259dc636
BLAKE2b-256 24fd43dacc62ce750410e9da2cf03dc5de71d8d88b02b055dfa1961af6a0c8f0

See more details on using hashes here.

File details

Details for the file kfp_notebook-0.8.2-py3-none-any.whl.

File metadata

  • Download URL: kfp_notebook-0.8.2-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.1.post20200322 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for kfp_notebook-0.8.2-py3-none-any.whl
Algorithm Hash digest
SHA256 381de61c421c50bed0709f2e7e4ed4b48d0ecb830a385bec9c1c151995e2b183
MD5 e5b68ef44323f801b2d797ff229a5d8a
BLAKE2b-256 04add5c04706c0df12ff0d8aff55eecc022db7d4d098cb8f001d21944704b4a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page