Skip to main content

Jupyter Notebook operator for Kubeflow Pipelines

Project description

KFP-Notebook is an operator that enable running notebooks as part of a Kubeflow Pipeline.

Building kfp-notebook

make clean install

Usage

The example below can easily be added to a python script or jupyter notebook for testing purposes.

import os
import kfp
from notebook.pipeline import NotebookOp
from kubernetes.client.models import V1EnvVar

# KubeFlow Pipelines API Endpoint
kfp_url = 'http://dataplatform.ibm.com:32488/pipeline'

# S3 Object Storage
cos_endpoint = 'http://s3.us-south.cloud-object-storage.appdomain.cloud'
cos_bucket = 'test-bucket'
cos_username = 'test'
cos_password = 'test123'
cos_directory = 'test-directory' 
cos_pull_archive = 'test-archive.tar.gz'

# Inputs and Outputs
inputs = []
outputs = []

# Container Image
image = 'tensorflow/tensorflow:latest'

def run_notebook_op(op_name, notebook_path):

    notebook_op = NotebookOp(name=op_name,
                             notebook=op_name,
                             cos_endpoint=cos_endpoint,
                             cos_bucket=cos_bucket,
                             cos_directory=cos_directory,
                             cos_pull_archive=cos_pull_archive,
                             pipeline_outputs=outputs,
                             pipeline_inputs=inputs,
                             image=image)

    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_ACCESS_KEY_ID', value=cos_username))
    notebook_op.container.add_env_variable(V1EnvVar(name='AWS_SECRET_ACCESS_KEY', value=cos_password))
    notebook_op.container.set_image_pull_policy('Always')

    return op

def demo_pipeline():
    stats_op = run_notebook_op('stats', 'generate-community-overview')
    contributions_op = run_notebook_op('contributions', 'generate-community-contributions')
    run_notebook_op('overview', 'overview').after(stats_op, contributions_op)

# Compile the new pipeline
kfp.compiler.Compiler().compile(demo_pipeline,'pipelines/pipeline.tar.gz')

# Upload the compiled pipeline
client = kfp.Client(host=kfp_url)
pipeline_info = client.upload_pipeline('pipelines/pipeline.tar.gz',pipeline_name='pipeline-demo')

# Create a new experiment
experiment = client.create_experiment(name='demo-experiment')

# Create a new run associated with experiment and our uploaded pipeline
run = client.run_pipeline(experiment.id, 'demo-run', pipeline_id=pipeline_info.id)

Generated Kubeflow Pipelines

Kubeflow Pipeline Example

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfp-notebook-0.9.0.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

kfp_notebook-0.9.0-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file kfp-notebook-0.9.0.tar.gz.

File metadata

  • Download URL: kfp-notebook-0.9.0.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.1.post20200322 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for kfp-notebook-0.9.0.tar.gz
Algorithm Hash digest
SHA256 91d34697b2a0233ffedfe9162f9e865957af173623dfc809e7b7bddaa8a1a873
MD5 305347cf411cc73bcb60606782b559fa
BLAKE2b-256 7ab04c32b954ff3810aefa6e8eb77d8354e907aac4b0415ffc21a6356bd708cf

See more details on using hashes here.

File details

Details for the file kfp_notebook-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: kfp_notebook-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.1.post20200322 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for kfp_notebook-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b91b9f16271426119311e64f55c969b2bc6ad2d1e43404b9f9b9f8e7379d3a1b
MD5 d2a0b0c91590ccedd5d4713ded7e2b81
BLAKE2b-256 6d013cfdb1ed5526faa853abafaa355a80c884fc31856de9c13b2e3455d9a6c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page