Skip to main content

Robust, high-volume, message based communication made easy

Project description

kiwiPy

kiwiPy Coveralls Github Actions Latest Version https://img.shields.io/pypi/pyversions/kiwipy.svg https://img.shields.io/pypi/l/kiwipy.svg https://joss.theoj.org/papers/10.21105/joss.02351/status.svg

kiwiPy is a library that makes remote messaging using RabbitMQ (and possibly other message brokers) EASY. It was designed to support high-throughput workflows in big-data and computational science settings and is currently used by AiiDA for computational materials research around the world. That said, kiwiPy is entirely general and can be used anywhere where high-throughput and robust messaging are needed.

Here’s what you get:

  • RPC

  • Broadcast (with filters)

  • Task queue messages

Let’s dive in, with some examples taken from the rmq tutorial. To see more detail head over to the documentation.

RPC

The client:

import kiwipy

with kiwipy.connect('amqp://localhost') as comm:
    # Send an RPC message
    print(" [x] Requesting fib(30)")
    response = comm.rpc_send('fib', 30).result()
    print((" [.] Got %r" % response))

(rmq_rpc_client.py source)

The server:

import threading
import kiwipy

def fib(comm, num):
    if num == 0:
        return 0
    if num == 1:
        return 1

    return fib(comm, num - 1) + fib(comm, num - 2)

with kiwipy.connect('amqp://127.0.0.1') as comm:
    # Register an RPC subscriber with the name 'fib'
    comm.add_rpc_subscriber(fib, 'fib')
    # Now wait indefinitely for fibonacci calls
    threading.Event().wait()

(rmq_rpc_server.py source)

Worker

Create a new task:

import sys
import kiwipy

message = ' '.join(sys.argv[1:]) or "Hello World!"

with rmq.connect('amqp://localhost') as comm:
    comm.task_send(message)

(rmq_new_task.py source)

And the worker:

import time
import threading
import kiwipy

print(' [*] Waiting for messages. To exit press CTRL+C')


def callback(_comm, task):
    print((" [x] Received %r" % task))
    time.sleep(task.count(b'.'))
    print(" [x] Done")


try:
    with kiwipy.connect('amqp://localhost') as comm:
        comm.add_task_subscriber(callback)
        threading.Event().wait()
except KeyboardInterrupt:
    pass

(rmq_worker.py source)

Citing

If you use kiwiPy directly or indirectly (e.g. by using AiiDA) then please cite:

Uhrin, M., & Huber, S. P. (2020). kiwiPy : Robust , high-volume , messaging for big-data and computational science workflows, 5, 4–6. http://doi.org/10.21105/joss.02351

This helps us to keep making community software.

Versioning

This software follows Semantic Versioning

Contributing

Want a new feature? Found a bug? Want to contribute more documentation or a translation perhaps?

Help is always welcome, get started with the contributing guide.

Development

This package utilises tox for unit test automation, and pre-commit for code style formatting and test automation.

To install these development dependencies:

pip install tox pre-commit

To run the unit tests:

tox

For the rmq tests you will require a running instance of RabbitMQ. One way to achieve this is using Docker and launching test/rmq/docker-compose.yml.

To run the pre-commit tests:

pre-commit run --all

To build the documentation:

tox -e docs-clean

Changes should be submitted as Pull Requests (PRs) to the develop branch.

Publishing Releases

  1. Create a release PR/commit to the develop branch, updating kiwipy/version.py and CHANGELOG.md.

  2. Fast-forward merge develop into the master branch

  3. Create a release on GitHub (https://github.com/aiidateam/kiwipy/releases/new), pointing to the release commit on master, named v.X.Y.Z (identical to version in kiwipy/version.py)

  4. This will trigger the continuous-deployment GitHub workflow which, if all tests pass, will publish the package to PyPi. Check this has successfully completed in the GitHub Actions tab (https://github.com/aiidateam/kiwipy/actions).

(if the release fails, delete the release and tag)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kiwipy-0.7.5.tar.gz (40.7 kB view details)

Uploaded Source

Built Distribution

kiwipy-0.7.5-py3-none-any.whl (29.6 kB view details)

Uploaded Python 3

File details

Details for the file kiwipy-0.7.5.tar.gz.

File metadata

  • Download URL: kiwipy-0.7.5.tar.gz
  • Upload date:
  • Size: 40.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for kiwipy-0.7.5.tar.gz
Algorithm Hash digest
SHA256 6bf99f3e5869da2078538ab030d9332dc56822ad7eb78fc6e9c688e9109a1ef5
MD5 6636f5680b810733bde1e0f4ff1b9ab2
BLAKE2b-256 59cf9f7513d99aa34a9c006042a2794af9c92d6c85639d8ec6f9e1af29b7b6f6

See more details on using hashes here.

Provenance

File details

Details for the file kiwipy-0.7.5-py3-none-any.whl.

File metadata

  • Download URL: kiwipy-0.7.5-py3-none-any.whl
  • Upload date:
  • Size: 29.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for kiwipy-0.7.5-py3-none-any.whl
Algorithm Hash digest
SHA256 92dee698a77c623ffecc670622b7ae6ca1bf87f7e9898ba8dd91ebc8ddf051d9
MD5 91004298a1f783728cda4b3c6b6d6c34
BLAKE2b-256 40c4c331db9387ec3244edd07ad823d946e84a3df89ff60f2edd2f82fe467706

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page