Skip to main content

A tiny sentence/word tokenizer for Japanese text written in Python

Project description

🌿 Konoha: Simple wrapper of Japanese Tokenizers

Open In Colab

GitHub stars

Downloads Downloads Downloads

Build Status Documentation Status Python PyPI GitHub Issues GitHub Pull Requests

Konoha is a Python library for providing easy-to-use integrated interface of various Japanese tokenizers, which enables you to switch a tokenizer and boost your pre-processing.

Supported tokenizers

Also, konoha provides rule-based tokenizers (whitespace, character) and a rule-based sentence splitter.

Quick Start with Docker

Simply run followings on your computer:

docker run --rm -p 8000:8000 -t himkt/konoha  # from DockerHub

Or you can build image on your machine:

git clone https://github.com/himkt/konoha  # download konoha
cd konoha && docker-compose up --build  # build and launch container

Tokenization is done by posting a json object to localhost:8000/api/v1/tokenize. You can also batch tokenize by passing texts: ["1つ目の入力", "2つ目の入力"] to localhost:8000/api/v1/batch_tokenize.

(API documentation is available on localhost:8000/redoc, you can check it using your web browser)

Send a request using curl on your terminal. Note that a path to an endpoint is changed in v4.6.4. Please check our release note (https://github.com/himkt/konoha/releases/tag/v4.6.4).

$ curl localhost:8000/api/v1/tokenize -X POST -H "Content-Type: application/json" \
    -d '{"tokenizer": "mecab", "text": "これはペンです"}'

{
  "tokens": [
    [
      {
        "surface": "これ",
        "part_of_speech": "名詞"
      },
      {
        "surface": "は",
        "part_of_speech": "助詞"
      },
      {
        "surface": "ペン",
        "part_of_speech": "名詞"
      },
      {
        "surface": "です",
        "part_of_speech": "助動詞"
      }
    ]
  ]
}

Installation

I recommend you to install konoha by pip install 'konoha[all]'.

  • Install konoha with a specific tokenizer: pip install 'konoha[(tokenizer_name)].
  • Install konoha with a specific tokenizer and remote file support: pip install 'konoha[(tokenizer_name),remote]'

If you want to install konoha with a tokenizer, please install konoha with a specific tokenizer (e.g. konoha[mecab], konoha[sudachi], ...etc) or install tokenizers individually.

Example

Word level tokenization

from konoha import WordTokenizer

sentence = '自然言語処理を勉強しています'

tokenizer = WordTokenizer('MeCab')
print(tokenizer.tokenize(sentence))
# => [自然, 言語, 処理, を, 勉強, し, て, い, ます]

tokenizer = WordTokenizer('Sentencepiece', model_path="data/model.spm")
print(tokenizer.tokenize(sentence))
# => [▁, 自然, 言語, 処理, を, 勉強, し, ています]

For more detail, please see the example/ directory.

Remote files

Konoha supports dictionary and model on cloud storage (currently supports Amazon S3). It requires installing konoha with the remote option, see Installation.

# download user dictionary from S3
word_tokenizer = WordTokenizer("mecab", user_dictionary_path="s3://abc/xxx.dic")
print(word_tokenizer.tokenize(sentence))

# download system dictionary from S3
word_tokenizer = WordTokenizer("mecab", system_dictionary_path="s3://abc/yyy")
print(word_tokenizer.tokenize(sentence))

# download model file from S3
word_tokenizer = WordTokenizer("sentencepiece", model_path="s3://abc/zzz.model")
print(word_tokenizer.tokenize(sentence))

Sentence level tokenization

from konoha import SentenceTokenizer

sentence = "私は猫だ。名前なんてものはない。だが,「かわいい。それで十分だろう」。"

tokenizer = SentenceTokenizer()
print(tokenizer.tokenize(sentence))
# => ['私は猫だ。', '名前なんてものはない。', 'だが,「かわいい。それで十分だろう」。']

Test

python -m pytest

Article

Acknowledgement

Sentencepiece model used in test is provided by @yoheikikuta. Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

konoha-5.1.0.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

konoha-5.1.0-py3-none-any.whl (17.5 kB view details)

Uploaded Python 3

File details

Details for the file konoha-5.1.0.tar.gz.

File metadata

  • Download URL: konoha-5.1.0.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.6 Linux/5.10.43.3-microsoft-standard-WSL2

File hashes

Hashes for konoha-5.1.0.tar.gz
Algorithm Hash digest
SHA256 d80d31a3b1bdcee2ce387386b9f7aa7ebfa8b0abdd5a4bd40ceb6a56fe27b44f
MD5 23ce18ef2fa123e4b9d6421792b680ad
BLAKE2b-256 28c62302c04f0c4ebde1d71df02237a9e1a98032a203f105dc4e17e15efebbe3

See more details on using hashes here.

File details

Details for the file konoha-5.1.0-py3-none-any.whl.

File metadata

  • Download URL: konoha-5.1.0-py3-none-any.whl
  • Upload date:
  • Size: 17.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.6 Linux/5.10.43.3-microsoft-standard-WSL2

File hashes

Hashes for konoha-5.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 718cf47a8480b6e042531d01b19d3e9698a02248f397c464cc009cb138640061
MD5 6e0f370007c2be4a67b8fdc49e29ef10
BLAKE2b-256 8f1232fab21289c3cf8f59b575b3452bfaa292c9cb493dffd3b3546174a64163

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page