Skip to main content

A Python library to help implementing kurobako's solvers and problems

Project description

kurobako-py

pypi GitHub license Actions Status

A Python library to help implement kurobako's solvers and problems.

Installation

$ pip install kurobako

Usage Examples

Define a solver based on random search

# filename: random_solver.py
import numpy as np

from kurobako import problem
from kurobako import solver


class RandomSolverFactory(solver.SolverFactory):
    def specification(self):
        return solver.SolverSpec(name='Random Search')

    def create_solver(self, seed, problem):
        return RandomSolver(seed, problem)


class RandomSolver(solver.Solver):
    def __init__(self, seed, problem):
        self._rng = np.random.RandomState(seed)
        self._problem = problem

    def ask(self, idg):
        params = []
        for p in self._problem.params:
            if p.distribution == problem.Distribution.UNIFORM:
                params.append(self._rng.uniform(p.range.low, p.range.high))
            else:
                low = np.log(p.range.low)
                high = np.log(p.range.high)
                params.append(float(np.exp(self._rng.uniform(low, high))))

        trial_id = idg.generate()
        next_step = self._problem.last_step
        return solver.NextTrial(trial_id, params, next_step)

    def tell(self, trial):
        pass


if __name__ == '__main__':
    runner = solver.SolverRunner(RandomSolverFactory())
    runner.run()

Define a problem that represents a quadratic function x**2 + y

# filename: quadratic_problem.py
from kurobako import problem


class QuadraticProblemFactory(problem.ProblemFactory):
    def specification(self):
        params = [
            problem.Var('x', problem.ContinuousRange(-10, 10)),
            problem.Var('y', problem.DiscreteRange(-3, 3))
        ]
        return problem.ProblemSpec(name='Quadratic Function',
                                   params=params,
                                   values=[problem.Var('x**2 + y')])

    def create_problem(self, seed):
        return QuadraticProblem()


class QuadraticProblem(problem.Problem):
    def create_evaluator(self, params):
        return QuadraticEvaluator(params)


class QuadraticEvaluator(problem.Evaluator):
    def __init__(self, params):
        self._x, self._y = params
        self._current_step = 0

    def current_step(self):
        return self._current_step

    def evaluate(self, next_step):
        self._current_step = 1
        return [self._x**2 + self._y]


if __name__ == '__main__':
    runner = problem.ProblemRunner(QuadraticProblemFactory())
    runner.run()

Run a benchmark that uses the above solver and problem

$ SOLVER=$(kurobako solver command python3 random_solver.py)
$ PROBLEM=$(kurobako problem command python3 quadratic_problem.py)
$ kurobako studies --solvers $SOLVER --problems $PROBLEM | kurobako run > result.json

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kurobako-0.1.11.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

kurobako-0.1.11-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file kurobako-0.1.11.tar.gz.

File metadata

  • Download URL: kurobako-0.1.11.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for kurobako-0.1.11.tar.gz
Algorithm Hash digest
SHA256 c0fe9bb7af2d2971c4edddcdd2accf7ef091bf2fea1f65639869491860b7746a
MD5 ee3285deb3fba3ecda7b8de4f8ba1cbb
BLAKE2b-256 fc7e58d8ca6c8dacc35654bd49d51f6001cd2cc98fd6ea7996753e797a4c90a7

See more details on using hashes here.

File details

Details for the file kurobako-0.1.11-py3-none-any.whl.

File metadata

  • Download URL: kurobako-0.1.11-py3-none-any.whl
  • Upload date:
  • Size: 12.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for kurobako-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 9d6dfd826f7102c8d892d4157ab9c24697b2efaa63cbe21e11d8105a9d1b0ca4
MD5 845b51e3fc334e70852453d6874c39a8
BLAKE2b-256 84a96fdb00951165cafa6c5790a5329c73b0b479a1f473d9b2add202de623443

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page