Skip to main content

A Python library to help implementing kurobako's solvers and problems

Project description

kurobako-py

pypi GitHub license Actions Status

A Python library to help implement kurobako's solvers and problems.

Installation

$ pip install kurobako

Usage Examples

Define a solver based on random search

# filename: random_solver.py
import numpy as np

from kurobako import problem
from kurobako import solver


class RandomSolverFactory(solver.SolverFactory):
    def specification(self):
        return solver.SolverSpec(name='Random Search')

    def create_solver(self, seed, problem):
        return RandomSolver(seed, problem)


class RandomSolver(solver.Solver):
    def __init__(self, seed, problem):
        self._rng = np.random.RandomState(seed)
        self._problem = problem

    def ask(self, idg):
        params = []
        for p in self._problem.params:
            if p.distribution == problem.Distribution.UNIFORM:
                params.append(self._rng.uniform(p.range.low, p.range.high))
            else:
                low = np.log(p.range.low)
                high = np.log(p.range.high)
                params.append(float(np.exp(self._rng.uniform(low, high))))

        trial_id = idg.generate()
        next_step = self._problem.last_step
        return solver.NextTrial(trial_id, params, next_step)

    def tell(self, trial):
        pass


if __name__ == '__main__':
    runner = solver.SolverRunner(RandomSolverFactory())
    runner.run()

Define a problem that represents a quadratic function x**2 + y

# filename: quadratic_problem.py
from kurobako import problem


class QuadraticProblemFactory(problem.ProblemFactory):
    def specification(self):
        params = [
            problem.Var('x', problem.ContinuousRange(-10, 10)),
            problem.Var('y', problem.DiscreteRange(-3, 3))
        ]
        return problem.ProblemSpec(name='Quadratic Function',
                                   params=params,
                                   values=[problem.Var('x**2 + y')])

    def create_problem(self, seed):
        return QuadraticProblem()


class QuadraticProblem(problem.Problem):
    def create_evaluator(self, params):
        return QuadraticEvaluator(params)


class QuadraticEvaluator(problem.Evaluator):
    def __init__(self, params):
        self._x, self._y = params
        self._current_step = 0

    def current_step(self):
        return self._current_step

    def evaluate(self, next_step):
        self._current_step = 1
        return [self._x**2 + self._y]


if __name__ == '__main__':
    runner = problem.ProblemRunner(QuadraticProblemFactory())
    runner.run()

Run a benchmark that uses the above solver and problem

$ SOLVER=$(kurobako solver command python3 random_solver.py)
$ PROBLEM=$(kurobako problem command python3 quadratic_problem.py)
$ kurobako studies --solvers $SOLVER --problems $PROBLEM | kurobako run > result.json

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kurobako-0.1.12.tar.gz (10.3 kB view details)

Uploaded Source

Built Distribution

kurobako-0.1.12-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file kurobako-0.1.12.tar.gz.

File metadata

  • Download URL: kurobako-0.1.12.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/54.2.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for kurobako-0.1.12.tar.gz
Algorithm Hash digest
SHA256 8b98242c13106ab3fd5ba0fc709b6da6fa80a1a8a3af0574c691bbf31ed390dd
MD5 a06df809d50f3796761a4b4079bad725
BLAKE2b-256 afa9d76cdffe8847c158aefce557ce12c99269f2b76d5a341a40ebb8180d6039

See more details on using hashes here.

File details

Details for the file kurobako-0.1.12-py3-none-any.whl.

File metadata

  • Download URL: kurobako-0.1.12-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/54.2.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for kurobako-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 3df78a44b6b75fe8e328851f5605e402e6e920ee6484916f77b958a83ed7016a
MD5 4f39917be482420bb320e5931e333143
BLAKE2b-256 b6c648ce36fe1391633a20f9daa611ddcc08a4811c777caf72a79000752ad14b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page