A Python library to help implementing kurobako's solvers and problems
Project description
kurobako-py
A Python library to help implement kurobako's solvers and problems.
Installation
$ pip install kurobako
Usage Examples
Define a solver based on random search
# filename: random_solver.py
import numpy as np
from kurobako import problem
from kurobako import solver
class RandomSolverFactory(solver.SolverFactory):
def specification(self):
return solver.SolverSpec(name='Random Search')
def create_solver(self, seed, problem):
return RandomSolver(seed, problem)
class RandomSolver(solver.Solver):
def __init__(self, seed, problem):
self._rng = np.random.RandomState(seed)
self._problem = problem
def ask(self, idg):
params = []
for p in self._problem.params:
if p.distribution == problem.Distribution.UNIFORM:
params.append(self._rng.uniform(p.range.low, p.range.high))
else:
low = np.log(p.range.low)
high = np.log(p.range.high)
params.append(float(np.exp(self._rng.uniform(low, high))))
trial_id = idg.generate()
next_step = self._problem.last_step
return solver.NextTrial(trial_id, params, next_step)
def tell(self, trial):
pass
if __name__ == '__main__':
runner = solver.SolverRunner(RandomSolverFactory())
runner.run()
Define a problem that represents a quadratic function x**2 + y
# filename: quadratic_problem.py
from kurobako import problem
class QuadraticProblemFactory(problem.ProblemFactory):
def specification(self):
params = [
problem.Var('x', problem.ContinuousRange(-10, 10)),
problem.Var('y', problem.DiscreteRange(-3, 3))
]
return problem.ProblemSpec(name='Quadratic Function',
params=params,
values=[problem.Var('x**2 + y')])
def create_problem(self, seed):
return QuadraticProblem()
class QuadraticProblem(problem.Problem):
def create_evaluator(self, params):
return QuadraticEvaluator(params)
class QuadraticEvaluator(problem.Evaluator):
def __init__(self, params):
self._x, self._y = params
self._current_step = 0
def current_step(self):
return self._current_step
def evaluate(self, next_step):
self._current_step = 1
return [self._x**2 + self._y]
if __name__ == '__main__':
runner = problem.ProblemRunner(QuadraticProblemFactory())
runner.run()
Run a benchmark that uses the above solver and problem
$ SOLVER=$(kurobako solver command python random_solver.py)
$ PROBLEM=$(kurobako problem command python quadratic_problem.py)
$ kurobako studies --solvers $SOLVER --problems $PROBLEM | kurobako run > result.json
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
kurobako-0.1.2.tar.gz
(9.1 kB
view details)
File details
Details for the file kurobako-0.1.2.tar.gz
.
File metadata
- Download URL: kurobako-0.1.2.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.5.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab0619185caa2fb0e3daf47191dfd1e78e3e223f5fe5c730579a0356ea4b4f95 |
|
MD5 | 6e3dcb1367f22b60d0605f07fbe39826 |
|
BLAKE2b-256 | edf9598e85cd6faf3a4175677756b0e9e6c28139b108257aea05defb74086e41 |