Skip to main content

A Python library to help implementing kurobako's solvers and problems

Project description

kurobako-py

pypi GitHub license Actions Status

A Python library to help implement kurobako's solvers and problems.

Installation

$ pip install kurobako

Usage Examples

Define a solver based on random search

# filename: random_solver.py
import numpy as np

from kurobako import problem
from kurobako import solver


class RandomSolverFactory(solver.SolverFactory):
    def specification(self):
        return solver.SolverSpec(name='Random Search')

    def create_solver(self, seed, problem):
        return RandomSolver(seed, problem)


class RandomSolver(solver.Solver):
    def __init__(self, seed, problem):
        self._rng = np.random.RandomState(seed)
        self._problem = problem

    def ask(self, idg):
        params = []
        for p in self._problem.params:
            if p.distribution == problem.Distribution.UNIFORM:
                params.append(self._rng.uniform(p.range.low, p.range.high))
            else:
                low = np.log(p.range.low)
                high = np.log(p.range.high)
                params.append(float(np.exp(self._rng.uniform(low, high))))

        trial_id = idg.generate()
        next_step = self._problem.last_step
        return solver.NextTrial(trial_id, params, next_step)

    def tell(self, trial):
        pass


if __name__ == '__main__':
    runner = solver.SolverRunner(RandomSolverFactory())
    runner.run()

Define a problem that represents a quadratic function x**2 + y

# filename: quadratic_problem.py
from kurobako import problem


class QuadraticProblemFactory(problem.ProblemFactory):
    def specification(self):
        params = [
            problem.Var('x', problem.ContinuousRange(-10, 10)),
            problem.Var('y', problem.DiscreteRange(-3, 3))
        ]
        return problem.ProblemSpec(name='Quadratic Function',
                                   params=params,
                                   values=[problem.Var('x**2 + y')])

    def create_problem(self, seed):
        return QuadraticProblem()


class QuadraticProblem(problem.Problem):
    def create_evaluator(self, params):
        return QuadraticEvaluator(params)


class QuadraticEvaluator(problem.Evaluator):
    def __init__(self, params):
        self._x, self._y = params
        self._current_step = 0

    def current_step(self):
        return self._current_step

    def evaluate(self, next_step):
        self._current_step = 1
        return [self._x**2 + self._y]


if __name__ == '__main__':
    runner = problem.ProblemRunner(QuadraticProblemFactory())
    runner.run()

Run a benchmark that uses the above solver and problem

$ SOLVER=$(kurobako solver command python3 random_solver.py)
$ PROBLEM=$(kurobako problem command python3 quadratic_problem.py)
$ kurobako studies --solvers $SOLVER --problems $PROBLEM | kurobako run > result.json

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kurobako-0.1.7.tar.gz (9.5 kB view details)

Uploaded Source

File details

Details for the file kurobako-0.1.7.tar.gz.

File metadata

  • Download URL: kurobako-0.1.7.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for kurobako-0.1.7.tar.gz
Algorithm Hash digest
SHA256 2e663baee7ef8ca49de25c8b71e4a2ade9cd47e47edfa09b1550eb8512105c35
MD5 bbe312cc48e236f9ee6c5dcf7a7dad65
BLAKE2b-256 4286895e031f490c5db3bb24a2b42401abed8ceb5ab72723cc109233b0d38d91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page