Skip to main content

No project description provided

Project description

GitlabCIPipeline GitlabCICoverage Appveyor Pypi Downloads ReadTheDocs

The main webpage for this project is: https://gitlab.kitware.com/computer-vision/kwarray

The kwarray module implements a small set of pure-python extensions to numpy and torch.

The kwarray module started as extensions for numpy + a simplified pandas-like DataFrame object with much faster item row and column access. But it also include an ArrayAPI, which is a wrapper that allows 100% interoperability between torch and numpy. It also contains a few algorithms like setcover and mincost_assignment.

Read the docs here: https://kwarray.readthedocs.io/en/master/

The top-level API is:

from kwarray.arrayapi import ArrayAPI
from .algo_assignment import (maxvalue_assignment, mincost_assignment,
                              mindist_assignment,)
from .algo_setcover import (setcover,)
from .dataframe_light import (DataFrameArray, DataFrameLight, LocLight,)
from .fast_rand import (standard_normal, standard_normal32, standard_normal64,
                        uniform, uniform32,)
from .util_averages import (RunningStats, stats_dict,)
from .util_groups import (apply_grouping, group_consecutive,
                          group_consecutive_indices, group_indices,
                          group_items,)
from .util_misc import (FlatIndexer,)
from .util_numpy import (arglexmax, argmaxima, argminima, atleast_nd, boolmask,
                         isect_flags, iter_reduce_ufunc,)
from .util_random import (ensure_rng, random_combinations, random_product,
                          seed_global, shuffle,)
from .util_torch import (one_hot_embedding, one_hot_lookup,)

The ArrayAPI

On of the most useful features in kwarray is the kwarray.ArrayAPI — a class that helps bridge between numpy and torch. This class consists of static methods that implement part of the numpy API and operate equivalently on either torch.Tensor or numpy.ndarray objects.

This works because every function call checks if the input is a torch tensor or a numpy array and then takes the appropriate action.

As you can imagine, it can be slow to validate your inputs on each function call. Therefore the recommended way of using the array API is via the kwarray.ArrayAPI.impl function. This function does the check once and then returns another object that directly performs the correct operations on subsequent data items of the same type.

The following example demonstrates both modes of usage.

import torch
import numpy as np
data1 = torch.rand(10, 10)
data2 = data1.numpy()
# Method 1: grab the appropriate sub-impl
impl1 = ArrayAPI.impl(data1)
impl2 = ArrayAPI.impl(data2)
result1 = impl1.sum(data1, axis=0)
result2 = impl2.sum(data2, axis=0)
assert np.all(impl1.numpy(result1) == impl2.numpy(result2))
# Method 2: choose the impl on the fly
result1 = ArrayAPI.sum(data1, axis=0)
result2 = ArrayAPI.sum(data2, axis=0)
assert np.all(ArrayAPI.numpy(result1) == ArrayAPI.numpy(result2))

Other Notes:

The kwarray.ensure_rng function helps you properly maintain and control local seeded random number generation. This means that you wont clobber the random state of another library / get your random state clobbered.

DataFrameArray and DataFrameLight implement a subset of the pandas API. They are less powerful, but orders of magnitude faster. The main drawback is that you lose loc, but iloc is available.

uniform32 and standard_normal32 are faster 32-bit random number generators (compared to their 64-bit numpy counterparts).

mincost_assignment is the Munkres / Hungarian algorithm. It solves the assignment problem.

setcover - solves the minimum weighted set cover problem using either an approximate or an exact solution.

one_hot_embedding is a fast numpy / torch way to perform the often needed OHE deep-learning trick.

group_items is a fast way to group a numpy array by another numpy array. For fine grained control we also expose group_indices, which groups the indices of a numpy array, and apply_grouping, which partitions a numpy array by those indices.

boolmask effectively inverts np.where.

Usefulness:

This is the frequency that I’ve used various components of this library with in my projects:

{
    'ensure_rng': 85,
    'ArrayAPI': 79,
    'DataFrameArray': 21,
    'boolmask': 17,
    'shuffle': 16,
    'argmaxima': 13,
    'group_indices': 12,
    'stats_dict': 9,
    'maxvalue_assignment': 7,
    'seed_global': 7,
    'iter_reduce_ufunc': 5,
    'isect_flags': 5,
    'group_items': 4,
    'one_hot_embedding': 4,
    'atleast_nd': 4,
    'mincost_assignment': 3,
    'standard_normal': 3,
    'arglexmax': 2,
    'DataFrameLight': 1,
    'uniform': 1,
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kwarray-0.5.18.tar.gz (63.8 kB view details)

Uploaded Source

Built Distributions

kwarray-0.5.18-py3-none-any.whl (66.8 kB view details)

Uploaded Python 3

kwarray-0.5.18-py2.py3-none-any.whl (66.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file kwarray-0.5.18.tar.gz.

File metadata

  • Download URL: kwarray-0.5.18.tar.gz
  • Upload date:
  • Size: 63.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for kwarray-0.5.18.tar.gz
Algorithm Hash digest
SHA256 0123ba3e56ab38677fe6412b1ab4575cb633e4248aa72512e4ba0242f4770586
MD5 bb30852563d44bd5ffe446fff60ed283
BLAKE2b-256 bcd222ebb34c3556d1f47411fecf7c2a45a9498c6c01713fd9d4aa1658ad7f97

See more details on using hashes here.

File details

Details for the file kwarray-0.5.18-py3-none-any.whl.

File metadata

  • Download URL: kwarray-0.5.18-py3-none-any.whl
  • Upload date:
  • Size: 66.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for kwarray-0.5.18-py3-none-any.whl
Algorithm Hash digest
SHA256 43797cd4d3df341a12eebe2f65c6554dd9426ee11ab9fb3c7043e933474800c9
MD5 923ca3955e52087b1a08838485ceabca
BLAKE2b-256 12e9e4d8bcbf10704c4a9ea4ae8f9ab8a83baf98111883be7c7a13710d20dcf5

See more details on using hashes here.

File details

Details for the file kwarray-0.5.18-py2.py3-none-any.whl.

File metadata

  • Download URL: kwarray-0.5.18-py2.py3-none-any.whl
  • Upload date:
  • Size: 66.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for kwarray-0.5.18-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 24f7a5ec710435df6eac3814f083c0e45fb4b56043feed2dae6ea1728130d08a
MD5 6a4513a83629453453e862699c83a8b8
BLAKE2b-256 f0fdc497981bbab5a69d829633906f16e8fa57f6c125eb95abe7c31271c1319e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page