Skip to main content

No project description provided

Project description

GitlabCIPipeline GitlabCICoverage Appveyor Pypi Downloads ReadTheDocs

The main webpage for this project is: https://gitlab.kitware.com/computer-vision/kwimage

The kwimage module handles low-level image operations at a high level.

The core kwimage is a functional library with image-related helper functions that are either unimplemented in or more have a more general interface then their opencv counterparts.

The kwimage module builds on kwarray and provides tools commonly needed when addressing computer vision problems. This includes functions for reading images, resizing, image warp transformations, run-length-encoding, and non-maximum-suppression.

The kwimage module is also the current home of my annotation data structures, which provide efficient ways to interoperate between different common annotation formats (e.g. different bounding box / polygon / point formats). These data structures have both a .draw and .draw_on method for overlaying visualizations on matplotlib axes or numpy image matrices respectively.

Read the docs at: http://kwimage.readthedocs.io/en/master/

The top-level API is:

from .algo import (available_nms_impls, daq_spatial_nms, non_max_supression,)
from .im_alphablend import (ensure_alpha_channel, overlay_alpha_images,
                            overlay_alpha_layers,)
from .im_color import (Color,)
from .im_core import (atleast_3channels, ensure_float01, ensure_uint255,
                      find_robust_normalizers, make_channels_comparable,
                      normalize, normalize_intensity, num_channels,
                      padded_slice,)
from .im_cv2 import (convert_colorspace, gaussian_blur, gaussian_patch, imcrop,
                     imresize, imscale, morphology, warp_affine,)
from .im_demodata import (checkerboard, grab_test_image,
                          grab_test_image_fpath,)
from .im_draw import (draw_boxes_on_image, draw_clf_on_image, draw_header_text,
                      draw_line_segments_on_image, draw_text_on_image,
                      draw_vector_field, make_heatmask, make_orimask,
                      make_vector_field,)
from .im_filter import (fourier_mask, radial_fourier_mask,)
from .im_io import (imread, imwrite, load_image_shape,)
from .im_runlen import (decode_run_length, encode_run_length, rle_translate,)
from .im_stack import (stack_images, stack_images_grid,)
from .structs import (Boxes, Coords, Detections, Heatmap, Mask, MaskList,
                      MultiPolygon, Points, PointsList, Polygon, PolygonList,
                      Segmentation, SegmentationList, smooth_prob,)
from .transform import (Affine, Linear, Matrix, Projective, Transform,
                        profile,)
from .util_warp import (add_homog, remove_homog, subpixel_accum,
                        subpixel_align, subpixel_getvalue, subpixel_maximum,
                        subpixel_minimum, subpixel_set, subpixel_setvalue,
                        subpixel_slice, subpixel_translate, warp_image,
                        warp_points, warp_tensor,)

NOTE: THE KWIMAGE STRUCTS WILL EVENTUALLY MOVE TO THE KWANNOT REPO (But this transition might take awhile)

The most notable feature of the kwimage module are the kwimage.structs objects. This includes the primitive Boxes, Mask, and Coords objects, The semi-primitive Points, Polygon structures, and the composite Heatmap and Detections structures (note: Heatmap is just a composite of array-like structures).

The primitive and semi-primitive objects store and manipulate annotation geometry, and the composite structures combine primitives into a single object that jointly manipulates the primitives using warp operations.

The Detections structure is a meta-structure that associates the other more primitive components, and allows a developer to compose them into something that represents objects of interest. The details of this composition are left up to the end-application.

The Detections object can also be “rasterized” and converted into a Heatmap object, which represents the same information, but is in a form that is more suitable for use when training convolutional neural networks. Likewise, the output of neural networks can be directly encoded in a kwimage.Heatmap object. The Heatmap.detect method can then be used to convert the dense heatmap representation into a spare Detections representation that is more suitable for use in an object-detection system. We note that the detect function is not a special detection algorithm. The detection algorithm (which is outside the scope of kwimage) produces the heatmap, and the detect method effectively “inverts” the rasterize procedure of Detections by finding peaks in the heatmap, and running non-maximum suppression.

This module contains data structures for three image annotation primitives:

  • Boxes # technically this could be made out of Coords, probably not for efficiency and decoupling

  • Mask # likewise this could be renamed to Raster

  • Coords #

These primative structures are used to define these metadata-containing composites:

  • Detections

  • Polygon

  • Heatmap

  • MultiPolygon

  • PolygonList

  • MaskList

All of these structures have a self.data attribute that holds a pointer to the underlying data representation.

Some of these structures have a self.format attribute describing the underlying data representation.

Most of the compositie strucutres also have a self.meta attribute, which holds user-level metadata (e.g. info about the classes).

Installation

There are a few small quirks with installing kwimage. There is an issue with the opencv python bindings such that we could rely on either the opencv-python or opencv-python-headless package. If you have either of these module already installed you can simply pip install kwimage without encountering any issues related to this. But if you do not already have a module that provides import cv2 installed, then you should install kwimage with one of the following “extra install” tags:

# We recommend using the headless version
pip install kwimage[headless]

# OR

# If other parts of your system depend on the opencv qt libs
# (this can conflict with pyqt5)
pip install kwimage[graphics]

On linux, pip install commands will download precompiled manylinux wheels. On other operating systems, or if you are installing from source, you may need to compile C-extension modules. However, there are equivalent python-only implementations of almost every c-extension. You can disable compilation or loading of c-extensions at compile or runtime by setting the environment variable: KWIMAGE_DISABLE_C_EXTENSIONS=1.

Also note, that when building from source, the build may fail if you not in a fresh state (related to skbuild-386. You can mitigate this by running python setup.py clean to remove build artifacts. Building from a clean environment should work.

A Note on GDAL

The kwimage library can use GDAL library for certain tasks (e.g. IO of geotiffs). GDAL can be a pain to install without relying on conda. Kitware also has a pypi index that hosts GDAL wheels for linux systems:

pip install --find-links https://girder.github.io/large_image_wheels GDAL

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kwimage-0.7.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (733.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (726.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

kwimage-0.7.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (732.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (724.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

kwimage-0.7.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (724.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (717.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

kwimage-0.7.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (724.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.16-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (717.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file kwimage-0.7.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d87f77daaa6c23a5c59aee269052eca850565cc46fe72d44a2a93f928963ee7b
MD5 a825a05041a2cfed00b8c153692ade78
BLAKE2b-256 4d1606a502facffb96b755ba8840c6a481a02b931731ff9ac9a40180f48861f8

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9f94a4d033f06c825d43c469b7346cbf2ed8b991f59c467214ebec69e181c2b1
MD5 c55b05ee6d400b4b3f4f792cf6655dcb
BLAKE2b-256 c770c2c9ca193be60d659e1625b83d4ac9c2ec7805fd059d0e24d75d58491ca9

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ce2df04d144d653838b0f08462a5ad6de3d1cb5a45bc00561aaa0d25626b220d
MD5 7ce98e907177b1dd360ea20f5ebb1d4e
BLAKE2b-256 eef4e3aeeee3e59222fce41e499953a7444a090120abf4ad03b92d9b45e9f8a1

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 27ba7a6ee2ed003e4996eccf673600dadf7ebb028d15b37e39fa2d8c6f02c356
MD5 00d25c925cb0aa2cfb442a3430371c04
BLAKE2b-256 f76d25d4bb2e1d813ca71e7b1dd3a070f36928e77a742f83e710f44934b9a037

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a35cdd6b0bb835986db21772731433d33d0c40c0015b0da5d07bf433ffa48fb
MD5 2f7f3812c9fa7894e2a1ce41d0eaf123
BLAKE2b-256 5ac11169b71f42f34524e9de0ef0f6abe225f32f74f68af614cc0b722ab4050c

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aef6854bc77262b9a55cbfd5225b27a759e3105b0e49f5a3c1cc2b99d4c9f595
MD5 7dee60aa2b6760942cec95290dc217b4
BLAKE2b-256 51d7fcd544d7017d3a4fb787874fb59e98f10563c4787d6e3c265b50ff7705c5

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7a0a1b235fb4bb009dbc9e00608ce12c923caccdd55ca876c0414cdc79242ea0
MD5 91895faaa9b3029515e7c8c9cb53b8df
BLAKE2b-256 3fee3f6424c3244df56178d54248c6305150b4e66186a500d478c469736c2168

See more details on using hashes here.

File details

Details for the file kwimage-0.7.16-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.16-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e3fcdf8a55a235edfda90e2341c8dffe70fb4c5fc8b2fdc4ca115b97d56abdf6
MD5 abe4cd50b02637dc6f5a47c4068d593d
BLAKE2b-256 5e30b4f4e26caf33929a3b4251bb92024069424d38468dda5d758d6e912d1323

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page