Skip to main content

No project description provided

Project description

GitlabCIPipeline GitlabCICoverage Appveyor Pypi Downloads ReadTheDocs

The main webpage for this project is: https://gitlab.kitware.com/computer-vision/kwimage

The kwimage module handles low-level image operations at a high level.

The core kwimage is a functional library with image-related helper functions that are either unimplemented in or more have a more general interface then their opencv counterparts.

The kwimage module builds on kwarray and provides tools commonly needed when addressing computer vision problems. This includes functions for reading images, resizing, image warp transformations, run-length-encoding, and non-maximum-suppression.

The kwimage module is also the current home of my annotation data structures, which provide efficient ways to interoperate between different common annotation formats (e.g. different bounding box / polygon / point formats). These data structures have both a .draw and .draw_on method for overlaying visualizations on matplotlib axes or numpy image matrices respectively.

Read the docs at: http://kwimage.readthedocs.io/en/master/

The top-level API is:

from .algo import (available_nms_impls, daq_spatial_nms, non_max_supression,)
from .im_alphablend import (ensure_alpha_channel, overlay_alpha_images,
                            overlay_alpha_layers,)
from .im_color import (Color,)
from .im_core import (atleast_3channels, ensure_float01, ensure_uint255,
                      make_channels_comparable, normalize, num_channels,
                      padded_slice,)
from .im_cv2 import (convert_colorspace, gaussian_patch, imresize, imscale,
                     warp_affine,)
from .im_demodata import (checkerboard, grab_test_image,
                          grab_test_image_fpath,)
from .im_draw import (draw_boxes_on_image, draw_clf_on_image,
                      draw_line_segments_on_image, draw_text_on_image,
                      draw_vector_field, make_heatmask, make_orimask,
                      make_vector_field,)
from .im_filter import (fourier_mask, radial_fourier_mask,)
from .im_io import (imread, imwrite, load_image_shape,)
from .im_runlen import (decode_run_length, encode_run_length, rle_translate,)
from .im_stack import (stack_images, stack_images_grid,)
from .structs import (Boxes, Coords, Detections, Heatmap, Mask, MaskList,
                      MultiPolygon, Points, PointsList, Polygon, PolygonList,
                      Segmentation, SegmentationList, smooth_prob,)
from .transform import (Affine, Linear, Matrix, Projective, Transform,)
from .util_warp import (add_homog, remove_homog, subpixel_accum,
                        subpixel_align, subpixel_getvalue, subpixel_maximum,
                        subpixel_minimum, subpixel_set, subpixel_setvalue,
                        subpixel_slice, subpixel_translate, warp_image,
                        warp_points, warp_tensor,)

NOTE: THE KWIMAGE STRUCTS WILL EVENTUALLY MOVE TO THE KWANNOT REPO

The most notable feature of the kwimage module are the kwimage.structs objects. This includes the primitive Boxes, Mask, and Coords objects, The semi-primitive Points, Polygon structures, and the composite Heatmap and Detections structures (note: Heatmap is just a composite of array-like structures).

The primitive and semi-primitive objects store and manipulate annotation geometry, and the composite structures combine primitives into a single object that jointly manipulates the primitives using warp operations.

The Detections structure is a meta-structure that associates the other more primitive components, and allows a developer to compose them into something that represents objects of interest. The details of this composition are left up to the end-application.

The Detections object can also be “rasterized” and converted into a Heatmap object, which represents the same information, but is in a form that is more suitable for use when training convolutional neural networks. Likewise, the output of neural networks can be directly encoded in a kwimage.Heatmap object. The Heatmap.detect method can then be used to convert the dense heatmap representation into a spare Detections representation that is more suitable for use in an object-detection system. We note that the detect function is not a special detection algorithm. The detection algorithm (which is outside the scope of kwimage) produces the heatmap, and the detect method effectively “inverts” the rasterize procedure of Detections by finding peaks in the heatmap, and running non-maximum suppression.

This module contains data structures for three image annotation primitives:

  • Boxes # technically this could be made out of Coords, probably not for efficiency and decoupling

  • Mask # likewise this could be renamed to Raster

  • Coords #

These primative structures are used to define these metadata-containing composites:

  • Detections

  • Polygon

  • Heatmap

  • MultiPolygon

  • PolygonList

  • MaskList

All of these structures have a self.data attribute that holds a pointer to the underlying data representation.

Some of these structures have a self.format attribute describing the underlying data representation.

Most of the compositie strucutres also have a self.meta attribute, which holds user-level metadata (e.g. info about the classes).

Installation

There are a few small quirks with installing kwimage. There is an issue with the opencv python bindings such that we could rely on either the opencv-python or opencv-python-headless package. If you have either of these module already installed you can simply pip install kwimage without encountering any issues related to this. But if you do not already have a module that provides import cv2 installed, then you should install kwimage with one of the following “extra install” tags:

# We recommend using the headless version
pip install kwimage[headless]

# OR

# If other parts of your system depend on the opencv qt libs
# (this can conflict with pyqt5)
pip install kwimage[graphics]

On linux, pip install commands will download precompiled manylinux wheels. On other operating systems, or if you are installing from source, you may need to compile C-extension modules. However, there are equivalent python-only implementations of almost every c-extension. You can disable compilation or loading of c-extensions at compile or runtime by setting the environment variable: KWIMAGE_DISABLE_C_EXTENSIONS=1.

Also note, that when building from source, the build may fail if you not in a fresh state (related to skbuild-386. You can mitigate this by running python setup.py clean to remove build artifacts. Building from a clean environment should work.

A Note on GDAL

The kwimage library can use GDAL library for certain tasks (e.g. IO of geotiffs). GDAL can be a pain to install without relying on conda. Kitware also has a pypi index that hosts GDAL wheels for linux systems:

pip install --find-links https://girder.github.io/large_image_wheels GDAL

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kwimage-0.7.8-py3-none-any.whl (210.5 kB view details)

Uploaded Python 3

kwimage-0.7.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (707.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (699.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

kwimage-0.7.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (705.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (698.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

kwimage-0.7.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (697.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (690.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

kwimage-0.7.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (697.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

kwimage-0.7.8-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (691.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file kwimage-0.7.8-py3-none-any.whl.

File metadata

  • Download URL: kwimage-0.7.8-py3-none-any.whl
  • Upload date:
  • Size: 210.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for kwimage-0.7.8-py3-none-any.whl
Algorithm Hash digest
SHA256 02352e239de4c52fdd96509c90587301ef99cff3029a18cfd9a3ee6f53ffa68d
MD5 b2de84847ef8721107fe5f7eb3ab2f8b
BLAKE2b-256 f663cee6f93ec51ae2cfbe2bba053b89f4226f0222e97b9276216153422fe7a9

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 76274aa087016e8cda6838404da626fb6d074fae2be8a8cb2b07f84e357d4c50
MD5 2183fce30212eddeacad0e11c1ac5308
BLAKE2b-256 33b0f5f4d75511f13791ece766efcd5969c84939fa6113730f57720e9c63051d

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c4b98bec2ee7c1acb58d33ef167f7dfc0fefec2dec8a88df57104ad896f0e5ae
MD5 5e58819bcf1fe46023e57914b60370d1
BLAKE2b-256 09053d47f74457d7c79a5b8f0421d050efb95ecc173df6e57ceae31c26909791

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f5c7d2d33660c0670c42af3de86916e13e177a953167b8666c6075ec96e2d38f
MD5 f174ff128e17658a8c0dc7cd6b56fbf8
BLAKE2b-256 626ac4019a2013044d64e65f8ec92b68fc8f3f15a0b831ad29ed11f9054b84a4

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 33a9ff490c7e17e852abb25707060eea30e2c28d64c44a55bb348d3763704795
MD5 5bc2ab69ea84a8087f89a4613a661c7e
BLAKE2b-256 3e90fc90cf8d48079b0ebcdb031c9c191a553871f7f369702d627508fa0b5dd4

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1d1624c4a015ad42b425672f0b0bf79d8584fc043b7caed1ec05a73cfa615f2
MD5 079a9cfa8f0ca92d00c4d0df3d554c5d
BLAKE2b-256 1941a96a937655e6cb0093d89f70542ae4837ea0f3228dccdf92a52621f1f580

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 378c79e45dabccf853a3d14de3725ba9ccdf353ccf40b87cb62db3757d33d36f
MD5 6238d3638fc827262f2e7f0f29c7d5e6
BLAKE2b-256 a80e64ee0ee2bdec309a2ac18f66ffdc2d9eaf721ed05617ac5a1656ef874f3d

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 324b692b823c4deab32f9144ecf660fe95de79d7ba85874f6b62e98bf0b7add0
MD5 4983c0c9a69f4842ae6d4759e4d2c54e
BLAKE2b-256 9c2c1e01d6a7ced599e7bbe27383c9afb6528fcbf1226df75250e6fe2dc8c844

See more details on using hashes here.

File details

Details for the file kwimage-0.7.8-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for kwimage-0.7.8-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fea7c80558391e78dc97195aedac5f79f035b3138ffd76d64a592d4acd1d6352
MD5 16551813b94d5777c8c9f02128a569c1
BLAKE2b-256 1f7d8210ec4db0c5f277869f0d6640610908cdafe2c7a0008411a2e8606b7eff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page