Python package for conveniently plotting results from pulsar timing array bayesian analyses.
Project description
La Forge
Pulsar Timing Array Bayesian Data Visualization
Graphic Credit: Stewart Vernon, via Deviant Art
Python package for conveniently plotting results from pulsar timing array bayesian analyses. Many of the functions are best used with enterprise outputs.
Not yet available on PyPI, please use
pip install git+https://github.com/Hazboun6/la_forge@master
to install or run the setup.py script once cloned to your pc.
Free software: MIT license
Documentation: https://la-forge.readthedocs.io.
Example code
from la_forge import rednoise
from la_forge.core import Core
from la_forge import utils
normal_ul_dir = '../BF_standard/DE436/'
free_spec_ul_dir = '../BF_free_spec/DE436/'
a = Core('plaw',chaindir=normal_ul_dir)
b = Core('free_spec',chaindir=free_spec_ul_dir)
tspan = 11.4*365.25*24*3600
a.set_rn_freqs(Tspan=tspan)
b.set_rn_freqs(Tspan=tspan)
compare = [a,b]
plot_filename = './noise_model_plots.png'
Colors = ['blue','red']
Labels = ['PTA PLaw', 'PTA Free Spec']
rednoise.plot_rednoise_spectrum(pulsar=psr, cores=compare, chaindir=chaindir,
show_figure=True, rn_type='', verbose=False,
Tspan=tspan, Colors=Colors, n_plaw_realizations=100,
labels=Labels, plotpath=plot_filename)
Features
TODO
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.
History
0.3.0 (2020-10-28) New docs. 0.2.0 (2020-02-13) Cleaned up various functionality and added more docs. 0.1.0 (2018-09-21)* ——————
First release on PyPI.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file la_forge-0.3.0.tar.gz
.
File metadata
- Download URL: la_forge-0.3.0.tar.gz
- Upload date:
- Size: 43.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e73c69a1cbff1567f92ce7abb73be9f780cc1c5cb456c15c5b0dba80b14bf23f |
|
MD5 | 96062353f890b09c7854a8d24db22db9 |
|
BLAKE2b-256 | 898510057c21d395a834215313485a6e30ce058e5927e3ec773cb2b6af57692d |