Skip to main content

Adds a new float type with uncertainty

Project description

labfis.py

Description

Small library (currently only one class) for uncertainty calculations and error propagation.

The uncertainty calculations are in accordance with gaussian’s propagation, as calculated by an analytical method:

Made by and for Physics Laboratory students in IFSC, who can't use uncertainties.py because of mean’s absolute deviation used in its calculation.

To get this library on google colaboratory:

!curl --remote-name \

-H 'Accept: application/vnd.github.v3.raw' \

--location https://raw.githubusercontent.com/phisgroup/labfis.py/development/labfis/main.py

Usage

Just import with from labfis import labfloat and create an labfloat object, as this exemple below:

>>> from labfis import labfloat
>>> a = labfloat(1,3)
>>> b = labfloat(2,4)
>>> a*b
(2 ± 7)

Check the Wiki for more details

Instalation

Intstall main releases with:

pip install labfis

Install development version with:

pip install git+https://github.com/phisgroup/labfis.py/tree/development

References

  1. Kirchner, James. "Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation" (PDF). Berkeley Seismology Laboratory. University of California. Retrieved 22 April 2016.
  2. Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association. 55 (292): 708–713. doi:10.2307/2281592. JSTOR 2281592.
  3. Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
  4. Ku, H. H. (October 1966). "Notes on the use of propagation of error formulas". Journal of Research of the National Bureau of Standards. 70C (4): 262. doi:10.6028/jres.070c.025. ISSN 0022-4316. Retrieved 3 October 2012.
  5. Clifford, A. A. (1973). Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558.
  6. Lee, S. H.; Chen, W. (2009). "A comparative study of uncertainty propagation methods for black-box-type problems". Structural and Multidisciplinary Optimization. 37 (3): 239–253. doi:10.1007/s00158-008-0234-7.
  7. Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  8. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibrations. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  9. "A Summary of Error Propagation" (PDF). p. 2. Retrieved 2016-04-04.
  10. "Propagation of Uncertainty through Mathematical Operations" (PDF). p. 5. Retrieved 2016-04-04.
  11. "Strategies for Variance Estimation" (PDF). p. 37. Retrieved 2013-01-18.
  12. Harris, Daniel C. (2003), Quantitative chemical analysis(6th ed.), Macmillan, p. 56, ISBN 978-0-7167-4464-1
  13. "Error Propagation tutorial" (PDF). Foothill College. October 9, 2009. Retrieved 2012-03-01.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labfis-1.1.4.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

labfis-1.1.4-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file labfis-1.1.4.tar.gz.

File metadata

  • Download URL: labfis-1.1.4.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for labfis-1.1.4.tar.gz
Algorithm Hash digest
SHA256 e3ac02fd1b6e7285958bac2538d3f812f0d0f301043f1f9e01e74b05ac01e300
MD5 9aa454bf186b2d28193e3719f08217e1
BLAKE2b-256 b471e5f3e5190971b6aa375bbc03cae65df4b4b3149895fe063721d2e814a031

See more details on using hashes here.

File details

Details for the file labfis-1.1.4-py3-none-any.whl.

File metadata

  • Download URL: labfis-1.1.4-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for labfis-1.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 75cec6cf72397e2141b5a7a5e96400b707a5585f93771a05d2a12b934add460f
MD5 42dbdd8012424ba5e7a355d7b6c6efae
BLAKE2b-256 73ba322558b0628dec3936f83e0795f56948e30b008158fbaae1932872c75bc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page