Adds a new float type with uncertainty
Project description
labfis.py
Description
Small library (currently only one class) for uncertainty calculations and error propagation.
The uncertainty calculations are in accordance with gaussian’s propagation, as calculated by an analytical method:
Made by and for Physics Laboratory students in IFSC, who can't use uncertainties.py because of mean’s absolute deviation used in its calculation.
To get this library on google colaboratory:
!curl --remote-name \
-H 'Accept: application/vnd.github.v3.raw' \
--location https://raw.githubusercontent.com/phisgroup/labfis.py/development/labfis/main.py
Usage
Just import with from labfis import labfloat
and create an labfloat object, as this exemple below:
>>> from labfis import labfloat
>>> a = labfloat(1,3)
>>> b = labfloat(2,4)
>>> a*b
(2 ± 7)
Check the Wiki for more details
Instalation
Intstall main releases with:
pip install labfis
Install development version with:
pip install git+https://github.com/phisgroup/labfis.py/tree/development
References
- Kirchner, James. "Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation" (PDF). Berkeley Seismology Laboratory. University of California. Retrieved 22 April 2016.
- Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association. 55 (292): 708–713. doi:10.2307/2281592. JSTOR 2281592.
- Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
- Ku, H. H. (October 1966). "Notes on the use of propagation of error formulas". Journal of Research of the National Bureau of Standards. 70C (4): 262. doi:10.6028/jres.070c.025. ISSN 0022-4316. Retrieved 3 October 2012.
- Clifford, A. A. (1973). Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558.
- Lee, S. H.; Chen, W. (2009). "A comparative study of uncertainty propagation methods for black-box-type problems". Structural and Multidisciplinary Optimization. 37 (3): 239–253. doi:10.1007/s00158-008-0234-7.
- Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
- Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibrations. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
- "A Summary of Error Propagation" (PDF). p. 2. Retrieved 2016-04-04.
- "Propagation of Uncertainty through Mathematical Operations" (PDF). p. 5. Retrieved 2016-04-04.
- "Strategies for Variance Estimation" (PDF). p. 37. Retrieved 2013-01-18.
- Harris, Daniel C. (2003), Quantitative chemical analysis(6th ed.), Macmillan, p. 56, ISBN 978-0-7167-4464-1
- "Error Propagation tutorial" (PDF). Foothill College. October 9, 2009. Retrieved 2012-03-01.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file labfis-1.1.4.tar.gz
.
File metadata
- Download URL: labfis-1.1.4.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e3ac02fd1b6e7285958bac2538d3f812f0d0f301043f1f9e01e74b05ac01e300 |
|
MD5 | 9aa454bf186b2d28193e3719f08217e1 |
|
BLAKE2b-256 | b471e5f3e5190971b6aa375bbc03cae65df4b4b3149895fe063721d2e814a031 |
File details
Details for the file labfis-1.1.4-py3-none-any.whl
.
File metadata
- Download URL: labfis-1.1.4-py3-none-any.whl
- Upload date:
- Size: 7.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 75cec6cf72397e2141b5a7a5e96400b707a5585f93771a05d2a12b934add460f |
|
MD5 | 42dbdd8012424ba5e7a355d7b6c6efae |
|
BLAKE2b-256 | 73ba322558b0628dec3936f83e0795f56948e30b008158fbaae1932872c75bc8 |