Skip to main content

Adds a new float type with uncertainty

Project description

labfis.py

Description

Small library (currently only one class) for uncertainty calculations and error propagation.

The uncertainty calculations are in accordance with gaussian’s propagation, as calculated by an analytical method:

Made by and for Physics Laboratory students in IFSC, who can't use uncertainties.py because of mean’s absolute deviation used in its calculation.

To get this library on google colaboratory:

!curl --remote-name \

-H 'Accept: application/vnd.github.v3.raw' \

--location https://raw.githubusercontent.com/phisgroup/labfis.py/development/labfis/main.py

Usage

Just import with from labfis import labfloat and create an labfloat object, as this exemple below:

>>> from labfis import labfloat
>>> a = labfloat(1,3)
>>> b = labfloat(2,4)
>>> a*b
(2 ± 7)

Check the Wiki for more details

Instalation

Intstall main releases with:

pip install labfis

Install development version with:

pip install git+https://github.com/phisgroup/labfis.py@development

References

  1. Kirchner, James. "Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation" (PDF). Berkeley Seismology Laboratory. University of California. Retrieved 22 April 2016.
  2. Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association. 55 (292): 708–713. doi:10.2307/2281592. JSTOR 2281592.
  3. Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
  4. Ku, H. H. (October 1966). "Notes on the use of propagation of error formulas". Journal of Research of the National Bureau of Standards. 70C (4): 262. doi:10.6028/jres.070c.025. ISSN 0022-4316. Retrieved 3 October 2012.
  5. Clifford, A. A. (1973). Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558.
  6. Lee, S. H.; Chen, W. (2009). "A comparative study of uncertainty propagation methods for black-box-type problems". Structural and Multidisciplinary Optimization. 37 (3): 239–253. doi:10.1007/s00158-008-0234-7.
  7. Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  8. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibrations. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  9. "A Summary of Error Propagation" (PDF). p. 2. Retrieved 2016-04-04.
  10. "Propagation of Uncertainty through Mathematical Operations" (PDF). p. 5. Retrieved 2016-04-04.
  11. "Strategies for Variance Estimation" (PDF). p. 37. Retrieved 2013-01-18.
  12. Harris, Daniel C. (2003), Quantitative chemical analysis(6th ed.), Macmillan, p. 56, ISBN 978-0-7167-4464-1
  13. "Error Propagation tutorial" (PDF). Foothill College. October 9, 2009. Retrieved 2012-03-01.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labfis-1.1.6.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

labfis-1.1.6-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file labfis-1.1.6.tar.gz.

File metadata

  • Download URL: labfis-1.1.6.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for labfis-1.1.6.tar.gz
Algorithm Hash digest
SHA256 fde6679e21ea63aa2032f2bdf9a43632d849b94fd64b391fe0312f5068111bf0
MD5 c5232b0e222d93d87546c65f2a9c98ee
BLAKE2b-256 554de33d3df8f9edac4db52f5dce354cac9650d619d0c464d7272e689cae5215

See more details on using hashes here.

File details

Details for the file labfis-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: labfis-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for labfis-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 c27a1e3ca53c8797b3d651ff88678ba97c57c3bfe7c5934e578b0bf3c3fadae8
MD5 dd55945b5baae23b99a8ea5ea513eab3
BLAKE2b-256 725f5d5509e28da234c8ec3b2a2779862f88b925e7a335dbe26dde9f6d16f52d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page