Skip to main content

Adds a new float type with uncertainty

Project description

labfis.py

Travis - CI PyPI License

Description

Small library for uncertainty calculations and error propagation.

Error propagation:

The uncertainty is calculated analytically in accordance with the gaussian propagation aproximation established by the International Bureau of Weights and Measures (BIPM):

To compare two labfloats it is used the following methods:

Assuming:

  • If they are equal they must satisfy:
  • If they are different they must satisfy:

NOTE: Two labfloats can be not different and not equal at the same time by these methods.

Made by and for Physics Laboratory students in IFSC, who can't use uncertainties.py because of mean’s absolute deviation used in its calculation.

Usage

Just import with from labfis import labfloat and create an labfloat object, as this exemple below:

>>> from labfis import labfloat
>>> a = labfloat(1,3)
>>> b = labfloat(2,4)
>>> a*b
(2 ± 7)

Check the Wiki for more details.

Instalation

Intstall main releases with:

pip install labfis

Install development version with:

pip install git+https://github.com/phisgroup/labfis.py@development

References

  1. Kirchner, James. "Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation" (PDF). Berkeley Seismology Laboratory. University of California. Retrieved 22 April 2016.
  2. Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association. 55 (292): 708–713. doi:10.2307/2281592. JSTOR 2281592.
  3. Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
  4. Ku, H. H. (October 1966). "Notes on the use of propagation of error formulas". Journal of Research of the National Bureau of Standards. 70C (4): 262. doi:10.6028/jres.070c.025. ISSN 0022-4316. Retrieved 3 October 2012.
  5. Clifford, A. A. (1973). Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558.
  6. Lee, S. H.; Chen, W. (2009). "A comparative study of uncertainty propagation methods for black-box-type problems". Structural and Multidisciplinary Optimization. 37 (3): 239–253. doi:10.1007/s00158-008-0234-7.
  7. Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  8. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibrations. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  9. "A Summary of Error Propagation" (PDF). p. 2. Retrieved 2016-04-04.
  10. "Propagation of Uncertainty through Mathematical Operations" (PDF). p. 5. Retrieved 2016-04-04.
  11. "Strategies for Variance Estimation" (PDF). p. 37. Retrieved 2013-01-18.
  12. Harris, Daniel C. (2003), Quantitative chemical analysis(6th ed.), Macmillan, p. 56, ISBN 978-0-7167-4464-1
  13. "Error Propagation tutorial" (PDF). Foothill College. October 9, 2009. Retrieved 2012-03-01.
  14. Helene, O.; Vanin, V.. Tratamento estatístico de dados em física experimental. São Paulo: Editora Edgard Blücher, 1981.
  15. Vuolo, J. E.. Fundamentos da teoria de erros. 2. ed. São Paulo: Editora Edgard Blücher, 1993.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labfis-1.2.0.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

labfis-1.2.0-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file labfis-1.2.0.tar.gz.

File metadata

  • Download URL: labfis-1.2.0.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for labfis-1.2.0.tar.gz
Algorithm Hash digest
SHA256 295273fb2984431aeea989b086c9b8b599b28c18d5a24f4b24a136a4b8f94fc8
MD5 5eecd0ef2a3f5501d892b24928b4e46d
BLAKE2b-256 db8bd5e37a6b73ecf8e9d55005cfa3bf9a70de6d7fe28c023534084e13ab3b95

See more details on using hashes here.

File details

Details for the file labfis-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: labfis-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for labfis-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 754564dc0908ee4f8843f6d8916b5d5feeeabd98ad8a5cb0df88126743c1e081
MD5 eedd2d9e9029863653a61378f0f0dd57
BLAKE2b-256 5bce49d839c8e72a1d9d8a57d00d535c59143e1fcd19c9a537dc3745df290519

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page