Skip to main content

Adds a new float type with uncertainty

Project description

labfis.py

Description

Small library (currently only one class) for uncertainty calculations and error propagation.

The uncertainty calculations are in accordance with gaussian’s propagation, as calculated by an analytical method:

Made by and for Physics Laboratory students in IFSC, who can't use uncertainties.py because of mean’s absolute deviation used in its calculation.

Usage

Just import with from labfis import labfloat and create an labfloat object, as this exemple below:

>>> from labfis import labfloat
>>> a = labfloat(1,3)
>>> b = labfloat(2,4)
>>> a*b
(2 ± 7)

Check the Wiki for more details.

Instalation

Intstall main releases with:

pip install labfis

Install development version with:

pip install git+https://github.com/phisgroup/labfis.py@development

References

  1. Kirchner, James. "Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation" (PDF). Berkeley Seismology Laboratory. University of California. Retrieved 22 April 2016.
  2. Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association. 55 (292): 708–713. doi:10.2307/2281592. JSTOR 2281592.
  3. Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
  4. Ku, H. H. (October 1966). "Notes on the use of propagation of error formulas". Journal of Research of the National Bureau of Standards. 70C (4): 262. doi:10.6028/jres.070c.025. ISSN 0022-4316. Retrieved 3 October 2012.
  5. Clifford, A. A. (1973). Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558.
  6. Lee, S. H.; Chen, W. (2009). "A comparative study of uncertainty propagation methods for black-box-type problems". Structural and Multidisciplinary Optimization. 37 (3): 239–253. doi:10.1007/s00158-008-0234-7.
  7. Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  8. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibrations. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  9. "A Summary of Error Propagation" (PDF). p. 2. Retrieved 2016-04-04.
  10. "Propagation of Uncertainty through Mathematical Operations" (PDF). p. 5. Retrieved 2016-04-04.
  11. "Strategies for Variance Estimation" (PDF). p. 37. Retrieved 2013-01-18.
  12. Harris, Daniel C. (2003), Quantitative chemical analysis(6th ed.), Macmillan, p. 56, ISBN 978-0-7167-4464-1
  13. "Error Propagation tutorial" (PDF). Foothill College. October 9, 2009. Retrieved 2012-03-01.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labfis-1.2.0b0.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

labfis-1.2.0b0-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file labfis-1.2.0b0.tar.gz.

File metadata

  • Download URL: labfis-1.2.0b0.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for labfis-1.2.0b0.tar.gz
Algorithm Hash digest
SHA256 5eeaa523eec5b07425276b7741d4d5737f5d857bf24c38338d82103b01741707
MD5 ef31dcdb00a3f8e5898e6f8518caf2dd
BLAKE2b-256 8cba318916e384b15da41d465cc107da0d6f6d72fb81474450cd04b1bcd2e368

See more details on using hashes here.

File details

Details for the file labfis-1.2.0b0-py3-none-any.whl.

File metadata

  • Download URL: labfis-1.2.0b0-py3-none-any.whl
  • Upload date:
  • Size: 7.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for labfis-1.2.0b0-py3-none-any.whl
Algorithm Hash digest
SHA256 7ff0c503fc2043dc39b3d6fc8ab16e30e623eafa1f9a3070d4b27bf66f703c15
MD5 efa3ff341dbc93dededdf1d217db31ae
BLAKE2b-256 2c351b9d47689b62b134fda87345c58b3fc6bdab54cc81ca9deb84d31772fe24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page