Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.10.tar.gz (62.2 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.10-py3-none-any.whl (75.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.10.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.10.tar.gz
  • Upload date:
  • Size: 62.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_aws-0.1.10.tar.gz
Algorithm Hash digest
SHA256 7f01dacbf8345a28192cec4ef31018cc33a91de0b82122f913eec09a76d64fd5
MD5 ee2144a8c339cd8f20dda44dac97a359
BLAKE2b-256 fe5b7595ab637d8076c6cc2f036e1003db084d383b9756c20222c8a87e6c7dc9

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 2cba72efaa9f0dc406d8e06a1fbaa3762678d489cbc5147cf64a7012189c161c
MD5 25acbb7cfca91958f24fdea77ad74fe7
BLAKE2b-256 3e05426d68802e8daa2951262999816833278c30e66350bd617b0f74e73bdbd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page