Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.11.tar.gz (62.2 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.11-py3-none-any.whl (75.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.11.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.11.tar.gz
  • Upload date:
  • Size: 62.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_aws-0.1.11.tar.gz
Algorithm Hash digest
SHA256 9aa1540dc7de39e20b25335375fcd57268f020331bbc5d30e9b9528a512a4e98
MD5 66b0750cc31c8339de5a99d432745487
BLAKE2b-256 93c5a87c587437a19595814ca932a99d9a58d6279d2f8f1b09886fbcd4070ecd

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.11-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 dc613da5c7869aa7d9a7ba8a65da67a9f804f0a71c9c8710233a8ce5b3d0847c
MD5 4cbe4bbb310b147b7ae1ad6731ca9c9d
BLAKE2b-256 9d8fcdb265400653c6fdee97f524cd9f700b0a17b2d5d064e63a87e89f15f65c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page