Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.12.tar.gz (62.6 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.12-py3-none-any.whl (76.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.12.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.12.tar.gz
  • Upload date:
  • Size: 62.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_aws-0.1.12.tar.gz
Algorithm Hash digest
SHA256 4f39e108fb93a42946bbb030bb409412281c603a3da549c744a7d92dcbb9bdfb
MD5 50e359522a5145557ddc2d4c8591a924
BLAKE2b-256 76df03869d3605d55f8ceae78f20f2e609c16ae00a589cdd4c0186742cda20a3

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.12-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 99dbda743cc05250eaa4ea70ee65c82332ef9a5f4b3b48d66d4e275e6159e520
MD5 c3348fcc2ce86926b1edd1c33715f0d0
BLAKE2b-256 82b89affb59c3c7b5877553b2aebc61082fe6167fc3eaa82b606b13e6ae41c71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page