Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.14.tar.gz (62.7 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.14-py3-none-any.whl (76.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.14.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.14.tar.gz
  • Upload date:
  • Size: 62.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_aws-0.1.14.tar.gz
Algorithm Hash digest
SHA256 3ef1060f915a012337744639b9f32cc1e1dc872c40386fbd37db4f5ded2f4af9
MD5 229a5e2b4456c73e72c8702cdbdbdbe0
BLAKE2b-256 5731d153a6d20dcc2b85917acb6b5792a419ca817c7b53bdfe6655f3d4964e89

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.14-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.14-py3-none-any.whl
Algorithm Hash digest
SHA256 269d6a1da091f136f220c437403202ef10a9f6bc24356e3646844bf4b4d9b88e
MD5 ab1aa23f3c6c035f824bcea3ff335d86
BLAKE2b-256 221ad099f7c4fb258b7b91fb65f68a1778db152da07c2e254fb699630c02925d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page