Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.17.tar.gz (69.0 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.17-py3-none-any.whl (82.8 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.17.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.17.tar.gz
  • Upload date:
  • Size: 69.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for langchain_aws-0.1.17.tar.gz
Algorithm Hash digest
SHA256 829cbcd8b3ffde6c2d7afd423da51c4bd03423db29b25ae7bc224979876d853e
MD5 64394e75e5763740f4afd1e6fb7b3711
BLAKE2b-256 da0ab2a3ae2dc77a52939cb30ccba5a8e2daa2a223bb048ba5cbe26fbc2cb43d

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.17-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.17-py3-none-any.whl
Algorithm Hash digest
SHA256 192a94eb3fa510ed7850cb7ab599fef47776ca872545dd37a0d7dc6a2887ae46
MD5 b52faa7998056be94e47a90ac1e293de
BLAKE2b-256 a44755ae0602b1f0c5817cc158a727677f1d273b59bdedfb5f8eaa61eb598b15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page