Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.0.dev1.tar.gz (69.3 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.0.dev1-py3-none-any.whl (83.1 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.0.dev1.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.0.dev1.tar.gz
  • Upload date:
  • Size: 69.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for langchain_aws-0.2.0.dev1.tar.gz
Algorithm Hash digest
SHA256 bfb2a8dc9a444480f0b9f4555b5361157d051586ff66d499c6eb2a2e3aed27c5
MD5 08c2c05085af53306bec2f5d82f46f2a
BLAKE2b-256 6d1f45220105f983161082217b542df20bc594bc4a87407b18cbc52bb9709bec

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.0.dev1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.0.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 7b608224afaf3b685eb04857725a7f89d0556bcd0d432e60c7f05949b44c9060
MD5 2fc77d0f1681d06a843ece85b760c0fa
BLAKE2b-256 2e6036006b6ff93d6d25b45124764bc81e5b967c0a8e06c058758a89bf3650d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page