Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.1.tar.gz (70.5 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.1-py3-none-any.whl (83.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.1.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.1.tar.gz
  • Upload date:
  • Size: 70.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for langchain_aws-0.2.1.tar.gz
Algorithm Hash digest
SHA256 e07ba5c16c7ef942072c3b3561cc517d34e01de8c05a9f9bc3d986e6b90f43b1
MD5 7321d7b09fe5567db6bb432abb6c8b4f
BLAKE2b-256 0a47b518e8f28cdebdae5af81cf7d2584981a8bcf225cc0b96ac1818f94fb1d8

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a866ca91d11798b06925cd39b7297db97e1ab438b91cbe2feeca443ed59e5b7a
MD5 a9fa1763f7f876ce5b15fd0b8856fa3d
BLAKE2b-256 6629780b8d7458d77403835107d3735b9907c93bd2d3680efe19056f86fb0eee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page