Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.3.tar.gz (73.5 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.3-py3-none-any.whl (87.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.3.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.3.tar.gz
  • Upload date:
  • Size: 73.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_aws-0.2.3.tar.gz
Algorithm Hash digest
SHA256 ed6c5dcc1f2e9e814db3107e4968a94680f20b66a110492e6906a05972f8e4ea
MD5 826b2822ceceaa8a88bf9e95a6d2fa26
BLAKE2b-256 00a6d60e6fc014e7498123d5a9b2c52c0d1924ad16db0bb19c5bf5b7139afaf8

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 517b946802d94b12f54c8464dae91108f54a93b6679e1b302979a9b50a99229d
MD5 9f82ed783bc95188247a9b283a8e2b62
BLAKE2b-256 0e3f1aa7d7d76296bc6643e90b3a1ef4fd8a08fe5f364e064b7ae994b2d6c3c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page