Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.5.tar.gz (73.6 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.5-py3-none-any.whl (87.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.5.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.5.tar.gz
  • Upload date:
  • Size: 73.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_aws-0.2.5.tar.gz
Algorithm Hash digest
SHA256 f16b91a0a2a3b6f4840a1569a895b65b5bfdb1a759bdb42789a8c6fd4a674716
MD5 f812a91b86f1b46baa3064dc13fb91fc
BLAKE2b-256 bb831f580030b526bb5c71662fd349b23fe1103a9cda1548286837bce7c35395

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.5-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b1d1a886b6d399d602dd81ef9e74c5ed9db6752fec86b4db9aebe76ccdc0307c
MD5 4c8492039711aa83198455517c8619fa
BLAKE2b-256 b08eb810040934065ca59c8abde6683568b33c208590df23323238e6f46c8727

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page