Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.6.tar.gz (73.7 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.6-py3-none-any.whl (87.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.6.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.6.tar.gz
  • Upload date:
  • Size: 73.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_aws-0.2.6.tar.gz
Algorithm Hash digest
SHA256 73235e429267ba48a1c32a1c7f2e7ae356da5b4fd00cb3a53b6b24bf10b9985f
MD5 d2ccea4170cba7752e8ad05e77771c03
BLAKE2b-256 1dff5a225bd21480bf02d0a451516407f6b9127b4cf0208a69b318fd54618558

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.6-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b22c0046d5795bc4a2d5d09b45f25a359c7bd31961b206622ef22727e7891f26
MD5 479153a1752f54f0682fa7c6e6f89523
BLAKE2b-256 8f9f2f5bb7fb3b9c2a145f79b878c2cf26be0dd84cc4c47e5c28253f2d2c7b2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page