Skip to main content

An integration package connecting Cohere and LangChain

Project description

Cohere

Cohere is a Canadian startup that provides natural language processing models that help companies improve human-machine interactions.

Installation and Setup

  • Install the Python SDK :
pip install langchain-cohere

Get a Cohere api key and set it as an environment variable (COHERE_API_KEY)

Cohere langchain integrations

API description Endpoint docs Import Example usage
Chat Build chat bots chat from langchain_cohere import ChatCohere cohere.ipynb
LLM Generate text generate from langchain_cohere import Cohere cohere.ipynb
RAG Retriever Connect to external data sources chat + rag from langchain.retrievers import CohereRagRetriever cohere.ipynb
Text Embedding Embed strings to vectors embed from langchain_cohere import CohereEmbeddings cohere.ipynb
Rerank Retriever Rank strings based on relevance rerank from langchain.retrievers.document_compressors import CohereRerank cohere.ipynb

Quick copy examples

Chat

from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage
chat = ChatCohere()
messages = [HumanMessage(content="knock knock")]
print(chat(messages))

LLM

from langchain_cohere import Cohere

llm = Cohere(model="command")
print(llm.invoke("Come up with a pet name"))

ReAct Agent

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_cohere import ChatCohere, create_cohere_react_agent
from langchain.prompts import ChatPromptTemplate
from langchain.agents import AgentExecutor

llm = ChatCohere()

internet_search = TavilySearchResults(max_results=4)
internet_search.name = "internet_search"
internet_search.description = "Route a user query to the internet"

prompt = ChatPromptTemplate.from_template("{input}")

agent = create_cohere_react_agent(
    llm,
    [internet_search],
    prompt
)

agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)```

agent_executor.invoke({
    "input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
})

RAG Retriever

from langchain_cohere import ChatCohere
from langchain.retrievers import CohereRagRetriever
from langchain_core.documents import Document

rag = CohereRagRetriever(llm=ChatCohere())
print(rag.get_relevant_documents("What is cohere ai?"))

Text Embedding

from langchain_cohere import CohereEmbeddings

embeddings = CohereEmbeddings(model="embed-english-light-v3.0")
print(embeddings.embed_documents(["This is a test document."]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_cohere-0.1.0.tar.gz (21.1 kB view details)

Uploaded Source

Built Distribution

langchain_cohere-0.1.0-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain_cohere-0.1.0.tar.gz.

File metadata

  • Download URL: langchain_cohere-0.1.0.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for langchain_cohere-0.1.0.tar.gz
Algorithm Hash digest
SHA256 960551293ea58d170fad37d44657d3ae4587f6b2e8f3f58922c53c59b9e9d85c
MD5 7780f5d31e77b08f3d0ff6f82b413d89
BLAKE2b-256 3f595c12150381d8b1c85bfccecbd10b8c03f5ee29a34346211aea95aec83812

See more details on using hashes here.

File details

Details for the file langchain_cohere-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_cohere-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f60e9eb41f7d4ead9659bddb3fae7aa18ddc3fdf2b2867be4bd8a565229f488d
MD5 e4b2af8eca14f6a542de041c4f3404ca
BLAKE2b-256 d5a951bb166e38f9f05011c8620f20e625aab71eb6606cadea106012da033e62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page