Skip to main content

An integration package connecting Cohere and LangChain

Project description

Cohere

Cohere is a Canadian startup that provides natural language processing models that help companies improve human-machine interactions.

Installation and Setup

  • Install the Python SDK :
pip install langchain-cohere

Get a Cohere api key and set it as an environment variable (COHERE_API_KEY)

Cohere langchain integrations

API description Endpoint docs Import Example usage
Chat Build chat bots chat from langchain_cohere import ChatCohere cohere.ipynb
LLM Generate text generate from langchain_cohere import Cohere cohere.ipynb
RAG Retriever Connect to external data sources chat + rag from langchain.retrievers import CohereRagRetriever cohere.ipynb
Text Embedding Embed strings to vectors embed from langchain_cohere import CohereEmbeddings cohere.ipynb
Rerank Retriever Rank strings based on relevance rerank from langchain.retrievers.document_compressors import CohereRerank cohere.ipynb

Quick copy examples

Chat

from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage
chat = ChatCohere()
messages = [HumanMessage(content="knock knock")]
print(chat(messages))

LLM

from langchain_cohere import Cohere

llm = Cohere(model="command")
print(llm.invoke("Come up with a pet name"))

ReAct Agent

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_cohere import ChatCohere, create_cohere_react_agent
from langchain.prompts import ChatPromptTemplate
from langchain.agents import AgentExecutor

llm = ChatCohere()

internet_search = TavilySearchResults(max_results=4)
internet_search.name = "internet_search"
internet_search.description = "Route a user query to the internet"

prompt = ChatPromptTemplate.from_template("{input}")

agent = create_cohere_react_agent(
    llm,
    [internet_search],
    prompt
)

agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)```

agent_executor.invoke({
    "input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
})

RAG Retriever

from langchain_cohere import ChatCohere
from langchain.retrievers import CohereRagRetriever
from langchain_core.documents import Document

rag = CohereRagRetriever(llm=ChatCohere())
print(rag.get_relevant_documents("What is cohere ai?"))

Text Embedding

from langchain_cohere import CohereEmbeddings

embeddings = CohereEmbeddings(model="embed-english-light-v3.0")
print(embeddings.embed_documents(["This is a test document."]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_cohere-0.1.2.tar.gz (23.5 kB view details)

Uploaded Source

Built Distribution

langchain_cohere-0.1.2-py3-none-any.whl (28.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_cohere-0.1.2.tar.gz.

File metadata

  • Download URL: langchain_cohere-0.1.2.tar.gz
  • Upload date:
  • Size: 23.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for langchain_cohere-0.1.2.tar.gz
Algorithm Hash digest
SHA256 976c6882ceb8b1e6848382abb9a0e40a06204607b073a430fdfc4b39bf9e4552
MD5 e8507fe521331998640fb84cdf168188
BLAKE2b-256 3cb1be217b18b6240e9422ed86470f87978d270228ed88eaa36bb19cbc5c284f

See more details on using hashes here.

File details

Details for the file langchain_cohere-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_cohere-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 19b4c975b49f11e1fe048fe44300bb3dc2e1f4fe6f12b22b51abe25d20529709
MD5 4b93d60dc4f60eb633884d1abab552ff
BLAKE2b-256 7faccd668e44fdb6f24515c6bf530105e698d921db7b82ba4f9e112602c3300a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page