Skip to main content

An integration package connecting Google's genai package and LangChain

Project description

langchain-google-genai

This package contains the LangChain integrations for Gemini through their generative-ai SDK.

Installation

pip install -U langchain-google-genai

Image utilities

To use image utility methods, like loading images from GCS urls, install with extras group 'images':

pip install -e "langchain-google-genai[images]"

Chat Models

This package contains the ChatGoogleGenerativeAI class, which is the recommended way to interface with the Google Gemini series of models.

To use, install the requirements, and configure your environment.

export GOOGLE_API_KEY=your-api-key

Then initialize

from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )
  • A PIL image

Embeddings

This package also adds support for google's embeddings models.

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")

Semantic Retrieval

Enables retrieval augmented generation (RAG) in your application.

# Create a new store for housing your documents.
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")

# Create a new document under the above corpus.
document_store = GoogleVectorStore.create_document(
    corpus_id=corpus_store.corpus_id, display_name="My Document"
)

# Upload some texts to the document.
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
for file in DirectoryLoader(path="data/").load():
    documents = text_splitter.split_documents([file])
    document_store.add_documents(documents)

# Talk to your entire corpus with possibly many documents. 
aqa = corpus_store.as_aqa()
answer = aqa.invoke("What is the meaning of life?")

# Read the response along with the attributed passages and answerability.
print(response.answer)
print(response.attributed_passages)
print(response.answerable_probability)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_genai-1.0.3.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

langchain_google_genai-1.0.3-py3-none-any.whl (31.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_genai-1.0.3.tar.gz.

File metadata

File hashes

Hashes for langchain_google_genai-1.0.3.tar.gz
Algorithm Hash digest
SHA256 c575782e7f5e48b93c061a20e8dc5c9549aeb526180a6bef4e057e80f07b821c
MD5 e2c0ffcce07c7e52978ca849bf4a805b
BLAKE2b-256 53d36c83b32e85f6c0ab2e02f9dd94ad6325e2797c86af09c3104095360a9ad1

See more details on using hashes here.

File details

Details for the file langchain_google_genai-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_genai-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 423fde5888ca9800fe6944a2f4ea5ed34cb9b37908092d9228f700ceefa365d8
MD5 0582fedcaf5afdd6014d4c59448bc7a0
BLAKE2b-256 a7f865365d23c9696749a27578ea2d468fb63b2821ca1a236712d75a2fd119b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page