Skip to main content

An integration package connecting GoogleVertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models .

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain.prompts import PromptTemplate
from langchain_google_vertexai import VertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

chain = prompt | llm

question = "Who was the president in the year Justin Beiber was born?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.0.2.tar.gz (19.6 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.0.2-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.0.2.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.2.tar.gz
Algorithm Hash digest
SHA256 ba94cdecf87c37badc845fc1ea2e1e93b6dc6bc9ecc0a33e2a8c39b0e32791ff
MD5 73f0b2eabee4e31e898f10fde45df003
BLAKE2b-256 8c130c74e780107193fd92d662cb161ec09fa2870f3ee5f29b444d5ebf0b0c32

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 dcc15f07472b0af3e8f2c00fe9a94cbfff987c855e6de121128a9858faaba533
MD5 48ae910232765314239dd6c246e83f25
BLAKE2b-256 71017179f066c7eed8bfdbf503b89d28f0440953bf61b5207538fbe883d9e148

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page