Skip to main content

An integration package connecting GoogleVertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain.prompts import PromptTemplate
from langchain_google_vertexai import VertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

chain = prompt | llm

question = "Who was the president in the year Justin Beiber was born?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.0.3.tar.gz (19.9 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.0.3-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.0.3.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.3.tar.gz
Algorithm Hash digest
SHA256 74ba72274057e1d384a867754513471e8361dbce438cc604df5514807d0ae9d6
MD5 3721666bcbb6523c1ae08d4916cf7a42
BLAKE2b-256 fde8cdb3b34a2ceeb4dc2d9ba7ac8f88f85b075d991dfa211c7e69b27a2f67e7

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6090d9f925e579b553a3f3fe30c715d45f5201398c863c71a3ed783ced9f6943
MD5 2ea1f1a714088ed4c55c9f027600bd7e
BLAKE2b-256 c4710dda4e9182628f13ace4b908e032a0d9b27691d8d1bf3ea55773c5a2707a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page