Skip to main content

An integration package connecting GoogleVertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain.prompts import PromptTemplate
from langchain_google_vertexai import VertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

chain = prompt | llm

question = "Who was the president in the year Justin Beiber was born?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.0.6.tar.gz (36.1 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.0.6-py3-none-any.whl (44.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.0.6.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.6.tar.gz
Algorithm Hash digest
SHA256 da0654dffd92b916f3ba766eca50c3f2d01dbe1d62683659a0fd43bc0fbe8f67
MD5 f06837df28478cd0dd76b4bfaee7b5d2
BLAKE2b-256 15216f53c5dabbc58bd3171f30066cdc917c4f108b0165f3890548710a6af709

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 602cb908463f7c720e8bd65e5de0a58a94ec08bd2351f84d3b2253a611b6fe68
MD5 991eaa6ca17bfada68a737dac529ef6c
BLAKE2b-256 9a3a54acafe9f892dd5a0fdfedb1a68f2ed9b0a7e866559e4d4e3c41c0760951

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page