Skip to main content

An integration package connecting GoogleVertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain.prompts import PromptTemplate
from langchain_google_vertexai import VertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

chain = prompt | llm

question = "Who was the president in the year Justin Beiber was born?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.0.7.tar.gz (36.4 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.0.7-py3-none-any.whl (44.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.0.7.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.7.tar.gz
Algorithm Hash digest
SHA256 c9aa0191ee94cb1dd7b5f9ed54dcab60d2b1186353ffc99e21413790210a7e73
MD5 3eea67ea4f2d9474d905ed5459f5dd7b
BLAKE2b-256 6c62c4abe784f591cbda3f01274ee18c690bb7a5009af2f1244a6eedcfafb9ce

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 da2570233eae36d5c86f36da8ab760901ad510e433b28d398fb014ac50712381
MD5 703f2a62e1339a6d0e25cad9200c4f9a
BLAKE2b-256 62e79e4a17b1bbaff0fc20c11eb8832de18e608aeda90a24eff19dcb642515f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page