Skip to main content

An integration package connecting GoogleVertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain.prompts import PromptTemplate
from langchain_google_vertexai import VertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

chain = prompt | llm

question = "Who was the president in the year Justin Beiber was born?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.1.0.tar.gz (37.6 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.1.0-py3-none-any.whl (46.2 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.1.0.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.0.tar.gz
Algorithm Hash digest
SHA256 4d4b34b5f0b3486c92de078d3ef7a972301b22cd5c2008b1b6b997708ea74cd7
MD5 8c2feb1c82d11d51e6521bccb079304c
BLAKE2b-256 e05157e111d6438ce1a95a614bc45fe2c9e1e2ab5a1fb7450f122ca096af9cd2

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2e6be101a6a48ba7a8300dbd9fbb039f6eac8bb678fab7e13471ec0487d6db02
MD5 1f7f60d7dba1e9ae8e2c2ba47780029a
BLAKE2b-256 bcadb28bf09fd2f1fcdaa950802eb1628c149136366759c85eb34db513731e37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page