Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.1.1.tar.gz (39.7 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.1.1-py3-none-any.whl (48.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.1.1.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.1.tar.gz
Algorithm Hash digest
SHA256 6f872d9e3fb188a100ee9348cd6867483e9416544b4fe031a1b26543ec547776
MD5 ce5f9432b58de676d857b0c20429bfd8
BLAKE2b-256 74ed2a555d2931129c7a736178004b6665cf3972e8a2431dd1d0f4d4c4b120dc

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 704c2487a6250d3a85839e5e791469773f62c5da2b4bfef3e63069657408d2a8
MD5 49b61e28b9d3cbe884e0b51e505c29f5
BLAKE2b-256 ec25ba150547a9f03fdc75793934236a6a61addc54abc9adbe3304a43daf58d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page