Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.1.2.tar.gz (38.7 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.1.2-py3-none-any.whl (47.8 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.1.2.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.2.tar.gz
Algorithm Hash digest
SHA256 3489546cd6a20cdd9b57af74aba419dc0e1b9225b842939587054bf8b90a5fe3
MD5 838a05b81ed10a85801c49a199ff410a
BLAKE2b-256 6a9a83179f2116b435a296e40f2fd80e561fac102c0a633cccfb4de15d982d13

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fa5110b7c6a71450e95e47c06d0fdd58b1fa70596728df8f5c205131cc7d40ba
MD5 ec0686ce72c92c05511c53a9f23b0141
BLAKE2b-256 84744d4231892b00e800043b4606c33dfdfb7c8f32701543c027f4e0f391d59e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page