Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-0.1.3.tar.gz (43.1 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-0.1.3-py3-none-any.whl (52.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-0.1.3.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.3.tar.gz
Algorithm Hash digest
SHA256 79cc3ed7e820a9806bd524aeca7a04ae4cc79d654b236645fc6fe971e8028fab
MD5 27ea34ee47fa4d9603479fb8936ebea7
BLAKE2b-256 3cb95c666cf154bb6faa5dad2115c579677d01cd828cdc3adf4ae373483a4ee1

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 cc7fe025843f3b4fce2f90bc42a3992e6c19df28b0b42653896927971d004792
MD5 eeb435cc7513824cb5cbb01faf50b462
BLAKE2b-256 dd43315f78991164c42c171eb39b2a7852739b5591b55474d4f51b35a0295c0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page